
Building Blocks for
Language Workbenches

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op dinsdag 13 december 2011 om 15:00 uur door

Lennart Christopher Leon KATS

doctorandus informatica
geboren te Amsterdam

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. A. van Deursen

Copromotor: Dr. E. Visser

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. A. van Deursen Delft University of Technology, promotor
Dr. E. Visser Delft University of Technology, copromotor
Prof. dr. P. D. Mosses Swansea University
Prof. dr. O. Nierstrasz University of Bern
Prof. dr. P. Klint University of Amsterdam
Prof. dr. K. G. Langendoen Delft University of Technology
Prof. dr. ir. R. L. Lagendijk Delft University of Technology

The work in this thesis has been carried out at the Delft University of Technol-
ogy, under the auspices of the research school IPA (Institute for Programming
research and Algorithmics). The research was financially supported by the
Netherlands Organisation for Scientific Research (NWO) project 612.063.512,
TFA: Transformations for Abstractions.

Copyright © 2011 Lennart C. L. Kats

Cover: Thor’s Formation – Bryce Canyon, Utah (http://flickr.com/photos/
trodel/3599116604) © 2007 Luca Galuzzi, http://galuzzi.it. Creative Com-
mons BY-SA 2.0.

Printed and bound in The Netherlands by CPI Wöhrmann Print Service.

ISBN 978-90-8570-780-6

Acknowledgments

This work would not have been possible without the advice and support of
many people. First of all, I would like to express my gratitude to my adviser,
Eelco Visser, for his guidance and support throughout the years. He has
been a mentor and role model to me and gave me the freedom to pursue
research directions that I found interesting. I also owe Martin Bravenboer for
helping me learn the ropes during my first year at Delft University. I thank
my promotor, Arie van Deursen, for his kind support and advice, and his
suggestions for improving this manuscript.

I thank the members of the reading committee, Paul Klint, Inald Lagendijk,
Koen Langendoen, Peter Mosses, and Oscar Nierstrasz, for reviewing my
thesis. I would also like to thank the anonymous reviewers of conferences
and journals for always being right – even when contradicting each other –
and for providing many useful suggestions. Also, several people voluntar-
ily provided useful feedback on one or more of my papers: Nathan Brun-
ing, Danny Groenewegen, Zef Hemel, Maartje de Jonge, Bernhard Merkle,
Nicolas Pierron, Kees Pronk, Glenn Vanderburg, Rob Vermaas, and Sander
Vermolen.

All the work of this thesis has been done in collaboration with other people.
I thank the co-authors of the included publications for their contributions:
Martin Bravenboer, Maartje de Jonge, Karl Trygve Kalleberg, Tony Sloane,
Emma Söderberg, Rob Vermaas, and Eelco Visser. I also thank Danny Groe-
newegen, Zef Hemel, Guido Wachsmuth, and others, for working together on
other exciting stuff.

Martin Bravenboer and Eelco Dolstra kindly provided source files that
formed a template for this thesis. Alberto González Sánchez provided me
the source of his inspiring cover, depicting ‘Mount Doctorate,’ of which I will
soon reach the summit myself. These templates saved me a lot of time during
the final preparations of my thesis.

I have Karl Trygve Kalleberg to thank for coming up with the wonderful
name “Spoofax” that always seems to make people wonder why the project is
named like that, and I’m grateful for his many invaluable contributions to the
original Spoofax project and the language workbench. I also thank Maartje de
Jonge for her work, in particular for making error recovery fast and robust,
and thank Emma Söderberg for helping us make that happen. Other con-
tributors to the Spoofax project are Adil Akhter, Nathan Bruning, Sebastian
Erdweg, Ricky Lindeman, Sverre Rabbelier, Vlad Vergu, Rob Vermaas, Tobi
Vollebregt, and Guido Wachsmuth; thank you for all your hard work!

The Software Engineering Research Group is a wonderful place to do research.
Plus it has pretty decent coffee too. Several times a day, we would form a small
crowd consisting of loyal coffee and tea addicts including Sander van der

iii

Burg, Eelco Dolstra, Danny Groenewegen, Zef Hemel (my ‘bro’), Maartje de
Jonge, Rob Vermaas, and Sander Vermolen. We’d arrange these stand-up
meetings by sending a short message over an IRC channel (often in the form
of a single letter ’c’ or the occasional Unicode U+2615 character), and then
pretty much talked about life, the universe, and everything. Other current and
past group members, unfortunately too many to name here, have contributed
to a great working environment. It has been a pleasure to work with you all.

Last but certainly not least, I would like to thank my family. I am grateful
to my parents who have supported me these years. And I thank my sister,
Merel, for all the fun times and her unwavering encouragement.

Lennart Kats
October 20, 2011,

Delft

iv

Contents

1 Introduction 1
1.1 Domain-Specific Languages . 1

1.2 Domain-Specific Language Engineering 2

1.2.1 Internal Domain-Specific Languages 3

1.2.2 External Domain-Specific Languages 4

1.2.3 Domain-Specific Language Engineering Tools 4

1.3 IDE Engineering . 6

1.4 Integrated DSL and IDE Engineering Tools 6

1.5 Challenges and Research Questions 8

1.5.1 Domain-Specific Languages For Declarative Specification
of Languages and IDEs 9

1.5.2 Declarative Syntax Definition in Interactive Environments 13

1.5.3 Interactive Meta-Tooling Support for Language Engineer-
ing . 14

1.6 Approach . 15

1.7 Origin of Chapters . 16

2 Mixing Source and Bytecode: A Case for Compilation by Normaliza-
tion 19
2.1 Introduction . 19

2.2 Extensions Based on the Dryad Compiler 24

2.2.1 Extension with Partial and Open Classes 24

2.2.2 Extension with Traits . 25

2.2.3 Extension with Iterator Generators 27

2.2.4 Assimilating Expression-Level Extensions 30

2.3 Realization of the Base Compiler 33

2.3.1 Language Design . 33

2.3.2 Name Management and Hygiene 36

2.3.3 Typechecking and Verification 36

2.3.4 Source Tracing . 38

2.3.5 Data-Flow Analysis on the Core Language 39

2.4 Normalization Rules for Code Generation 39

2.4.1 Mixed Language Normalization 40

2.4.2 Pseudo-Instruction Normalization 41

2.5 Discussion . 42

2.6 Related and Future Work . 43

2.7 Conclusion . 45

v

3 Using Aspects for Language Portability 47
3.1 Introduction . 47

3.2 Targeting Multiple Software Platforms 50

3.2.1 Language Portability Concerns 50

3.2.2 Aspects to Address Language Portability Concerns . . . 52

3.3 Modularity and Aspects in Stratego 53

3.3.1 Modularity and Extensible Definitions 54

3.3.2 Introducing Aspect-Oriented Programming to Stratego . 55

3.3.3 Implementation of Aspects in Stratego 56

3.4 Encapsulating Platform Logic with Aspects 58

3.4.1 Platform-Specific Libraries 58

3.4.2 Platform Escapes and Native Calls 59

3.4.3 Interoperability and integration with Java applications . 62

3.4.4 Performance and Stack Behavior 64

3.5 Discussion . 65

3.6 Related work . 67

3.7 Conclusion . 69

4 The Spoofax Language Workbench 71
4.1 Introduction . 71

4.2 An Overview of Spoofax . 76

4.2.1 Editor Services . 76

4.2.2 Component Architecture 77

4.2.3 Structure of a Language Definition 78

4.2.4 Agile Language Development 79

4.2.5 Example Domain-Specific Language 82

4.3 Syntax . 82

4.3.1 Syntactic Editor Services 84

4.4 Analysis and Transformation . 85

4.4.1 Stratego . 86

4.4.2 Desugaring . 87

4.4.3 Reporting Errors and Warnings 88

4.4.4 Binding Transformations to Editor Services 89

4.4.5 Name and Type Analysis 91

4.4.6 Reference Resolving and Occurrence Highlighting . . . 95

4.4.7 Content Completion . 95

4.4.8 Transformations, Code Generation, and Views 96

4.5 Implementation . 97

4.5.1 Language-parametric Editor Services 98

4.5.2 Semantic Services and Rewrite Rules 100

4.5.3 Editor Extensibility and Customization 100

4.6 Experience . 101

4.7 Discussion and Related Work . 103

4.8 Open Issues and Future Work . 106

4.9 Conclusion . 107

vi

5 Decorated Attribute Grammars 109
5.1 Introduction . 109

5.2 Attribute Grammars . 111

5.2.1 Pattern-Based Attribute Grammars 111

5.2.2 Copy Rules . 113

5.3 Decorators . 113

5.3.1 Basic Attribute Propagation Operations 114

5.3.2 Attribute Propagation using Decorators 115

5.4 Applications . 117

5.4.1 Constraints and Error Reporting 118

5.4.2 Name and Type Analysis 119

5.4.3 Control-flow Analysis . 120

5.4.4 Data-flow analysis . 122

5.5 Case Study: Grammar Analyses and Transformations 125

5.6 Implementation . 126

5.6.1 Performance . 127

5.7 Related Work . 128

5.8 Conclusions and Future Work . 129

6 Error Recovery for Generated Modular Language Environments 131
6.1 Introduction . 131

6.2 Composite Languages and Generalized Parsing 133

6.3 Island Grammars . 136

6.4 Permissive Grammars . 137

6.4.1 Chunk-Based Water Recovery Rules 139

6.4.2 General Water Recovery Rules 140

6.4.3 Literal-Insertion Recovery Rules 142

6.4.4 Combining Different Recovery Rules 144

6.4.5 Automatic Derivation of Permissive Grammars 144

6.4.6 Customization of Permissive Grammars 147

6.5 Parsing Permissive Grammars 148

6.5.1 Backtracking . 149

6.5.2 Selecting Choice Points for Backtracking 149

6.5.3 Applying Recovery Rules 150

6.5.4 Algorithm . 151

6.6 Layout-Sensitive Recovery of Scoping Structures 153

6.7 Layout-Sensitive Regional Recovery 155

6.7.1 Nested Structures as Regions 155

6.7.2 Layout-Sensitive Region Selection 156

6.7.3 Selection Schemata . 157

6.7.4 Practical Considerations 158

6.7.5 Integrating Recovery Techniques 159

6.8 Applying Error Recovery in an IDE 159

6.8.1 Efficient Construction of Languages and Editor Services 160

6.8.2 Guarantees on Recovery Correctness 160

6.8.3 Syntactic Error Reporting 161

Contents vii

6.8.4 Syntax Highlighting . 161

6.8.5 Content Completion . 162

6.9 Evaluation . 164

6.9.1 Setup . 164

6.9.2 Experiments . 166

6.9.3 Summary . 173

6.10 Related Work . 173

6.10.1 Recovery for Composable Languages 174

6.10.2 IDE support for Composite Languages 175

6.10.3 Island Grammars . 176

6.11 Conclusion . 176

7 Interactive Disambiguation of Meta Programs with Concrete Object
Syntax 179
7.1 Introduction . 179

7.2 Meta-programming with Concrete Object Syntax 182

7.3 Concrete Syntax Embedding Techniques 183

7.3.1 Mixin Grammars . 184

7.3.2 Assimilation of Concrete Object Syntax in Meta Lan-
guages . 185

7.3.3 Automatic Generation of Mixin Grammars 186

7.4 Interactive Disambiguation . 187

7.4.1 Classes of Ambiguities . 188

7.4.2 Ambiguity in Quotations 188

7.4.3 Ambiguity in Anti-Quotations 189

7.4.4 Automatically Providing Disambiguation Suggestions . 190

7.4.5 Presentation of Suggestions 192

7.5 Evaluation . 193

7.6 Discussion and Related Work . 195

7.7 Conclusion . 199

8 Integrated Language Definition Testing 201
8.1 Introduction . 201

8.2 Background: Language Definitions 203

8.3 Test Specification Language Design 205

8.4 Test Specification Interaction Design 208

8.4.1 Editor Services for Test Specification 210

8.4.2 Running Language Definition Tests 210

8.4.3 Using Integrated Language Definition Testing 212

8.5 Language Definition Testing by Example 213

8.5.1 Syntax . 214

8.5.2 Static Semantic Checks . 215

8.5.3 Navigation . 216

8.5.4 Transformations and Refactorings 216

8.5.5 Code Generation and Execution 217

8.5.6 Testing for End-Programmers 218

viii

8.5.7 Freeform Tests . 219

8.5.8 Self Application . 219

8.6 Implementation . 219

8.6.1 Infrastructure . 220

8.6.2 Syntax and Parsing . 220

8.6.3 Tool Support . 222

8.7 Discussion and Related Work . 223

8.8 Concluding Remarks . 225

9 Conclusion 227
9.1 Summary of Contributions . 227

9.2 Evaluation . 228

9.3 Research Questions Revisited . 229

9.4 Recommendations for Future Work 233

Bibliography 235

Samenvatting 257

Curriculum Vitae 261

Titles in the IPA Dissertation Series 263

Contents ix

x

1
Introduction

This dissertation presents research on techniques, methods, and tool support
for domain-specific language engineering. Domain-specific language engineering
is the discipline of designing, developing, and maintaining domain-specific
programming languages. The focus of this thesis is the architecture of language
workbenches their underlying technologies. Language workbenches are tools
that make language engineering more efficient by providing an integrated
development environment for language engineering tasks. In particular, we
introduce the Spoofax language workbench, and describe its techniques for
high-level, portable language definitions, language composition, interactive
support for defining languages, and language testing.

In this introductory chapter, we first provide background on domain-spe-
cific languages and give an overview of domain-specific language engineering
approaches and tools. We then discuss open challenges in the area and outline
the main research questions that are addressed in this thesis.

1.1 D O M A I N - S P E C I F I C L A N G U A G E S

Programming languages are at the heart of computer science. Fundamentally,
programming languages are used to write programs that control the behavior
of computer systems. Traditionally, they would do just that: provide a way
to control the hardware, by allocating and accessing memory, executing com-
putations, and controlling devices. Over time, high-level programming lan-
guages introduced abstractions over implementation details and moved from
being hardware-oriented to being task-oriented. This evolution of languages
has been a fundamental factor in allowing the construction of software of
significant scale, complexity, and flexibility.

Domain-specific programming languages (DSLs) introduce abstractions for
tasks in a specific domain. Notable early examples of DSLs include languages
made in the Unix tradition of Little Languages [Bentley, 1986] that started
in the 1970’s and spawned specialized languages for technical domains such
as shell services (sh), incremental rebuilds (make), lexical analysis (Lex), and
parsing (Yacc). Another well-known example is the structured query lan-
guage SQL [Chamberlin and Boyce, 1974], which was introduced in the same
time period, and is still commonly used today for database queries. DSLs are
also used in domains such as insurance modeling, real-time financial trading,
and scientific computation. Recent uses of DSLs have been extensively docu-
mented in surveys such as [Spinellis and Guruprasad, 1997; van Deursen and
Klint, 1998; van Deursen et al., 2000; Spinellis, 2001; Mernik et al., 2005].

1

Two central concepts that make DSLs compelling are domain-specific notation
and linguistic abstraction. Through domain-specific notation, DSLs can adopt
specialized words, phrases, and other notational conventions that correspond
to the problem domain. Through linguistic abstraction, they allow solutions
to be expressed at a higher level. With the combination of these concepts,
DSLs provide the following opportunities:

• Concise, high-level specification of software by providing specialized nota-
tion and abstracting over implementation details, increasing developer
productivity and software maintainability and understandability.

• Encapsulation of domain knowledge by incorporating domain expertise and
technical implementation know-how, ensuring separation of concerns
and supporting reuse among multiple DSL programs.

• Domain-specific analysis, verification, optimization, and parallelization of DSL
programs based on domain concepts that are made explicit in DSLs,
aiding in program understanding, robustness, and avoiding the need
for manual optimization at the underlying implementation level.

• Domain-specific tool support for working with DSLs, using domain-specific
analyses in tools such as specialized editors, facilitating DSL program
development, understanding, and maintenance.

• Portability of DSL programs by abstracting over implementation details
of a particular implementation platform and potentially supporting mul-
tiple target platforms.

The realization of these opportunities involves two fundamental trade-offs:

• DSLs trade generality for appropriate abstractions, notation, and expres-
sive power in a limited domain.

• The opportunities provided by DSLs must be balanced against the cost
of design, development and adoption of a DSL.

The key to effectively applying a DSL approach in a certain domain is to en-
sure that these are favorable trade-offs. This requires a good understanding
of the application domain, in order to select a suitable scope and design ap-
propriate abstractions, and systematic techniques and tools for efficient DSL
implementation. DSL engineering techniques and tools aim to facilitate both
the design and construction of DSLs by minimizing the development time
and ensuring quick turnaround time between design decisions, new domain
insights, and new technical developments.

1.2 D O M A I N - S P E C I F I C L A N G U A G E E N G I N E E R I N G

There are two architectural approaches that DSL engineers can follow, deter-
mining the techniques and tools involved in the construction of DSLs. With
the internal DSL approach, DSL engineers rely purely on the use of idiomatic

2

programming techniques in a general-purpose language, to stylize an ap-
plication framework as a language in its own right. With the external DSL
approach, DSL engineers design a custom syntax (notation) and semantics
(meaning) for each DSL, usually implemented in the form of specialized in-
terpreters or compilers. We discuss both approaches next.

1.2.1 Internal Domain-Specific Languages

Internal DSLs, sometimes called domain-specific embedded languages, rely
purely on the syntax and semantics provided by a general-purpose host lan-
guages such as Haskell, Scala, or Smalltalk [Hudak, 1998; Fowler, 2011]. Inter-
nal DSLs are distinguished from traditional libraries and application frame-
works by their use of idiomatic programming techniques. Instead of using
specialized tools for language engineering, they use programming techniques
such as fluent interfaces [Fowler, 2011] and meta-programming capabilities
provided by the host language such as template meta-programming, reflec-
tion, and implicits. These features give libraries the look and feel of a new
language, while still maintaining full integration and compatibility with the
host language. As an example, the Mockito library1 uses fluent interfaces and
reflection to implement an internal DSL in Java:

Iterator<String> mockIterator = mock(Iterator.class);
when(mockIterator.next())

.thenReturn("First")

.thenReturn("Second")

.thenThrow(new NoSuchElementException());

Using an API that resembles English sentences, it provides an abstraction for
the construction of mock objects. In this example, it dynamically creates a
class that implements the iterator interface with the behavior described for
the next() method. As an internal DSL, Mockito adds no keywords or other
syntax to the language but relies purely on the syntax and semantics of the
Java language.

DSLs are naturally smaller in scope than traditional, general-purpose lan-
guages. The approach of internal DSLs can provide a good match for this
reduced scope by making it possible to develop a DSL with only modest ef-
fort. Still, to fully realize the potential of DSLs, the approach also comes with
a number of inherent limitations [Mernik et al., 2005]:

• The syntax and structure of the DSL are constrained by the user-de-
finable notation offered by the host language, limiting the potential for
domain-specific notation.

• Appropriate domain-specific constructs and abstractions cannot always
be mapped in a straightforward way to functions or objects that can be
put in a library. Examples named in [Mernik et al., 2005] are traversals
and error handling.

1http://mockito.org/.

Chapter 1. Introduction 3

http://mockito.org/

• The opportunities of DSLs for domain-specific analysis, verification, op-
timization, and parallelization are much harder or unfeasible based on
a general-purpose language, since the source code patterns are usually
too complex and not well defined. Examples are provided in [Hemel
et al., 2011].

These limitations can be overcome by the use of a separate definition of the
syntax and semantics of the DSL, allowing the DSL to break the mold of its
general-purpose host language and facilitating analyses and transformations
on domain-specific language constructs. Such a separate syntactic and se-
mantic definition is the fundamental distinguishing characteristic of external
DSLs.

1.2.2 External Domain-Specific Languages

External domain-specific languages have their own syntax and semantics, in-
dependent of any general-purpose language. This means they can provide
stronger support for domain-specific notation than internal DSLs, and sup-
port increased flexibility in the static and dynamic semantics of the language.
This flexibility is achieved by implementing the language syntax and seman-
tics in the form of a tool such as an interpreter or compiler.

Beyond interpreters and compilers, language engineers can implement spe-
cialized support for using an external DSL in an integrated development en-
vironment (IDE). Modern, graphical user-interface based IDEs provide rich
editor services that are tailored towards a specific language. Syntactic editor
services provide functionality based on the syntax of a language, e.g. syntax
highlighting, syntax error marking, code folding, and an outline view. IDEs
can also support semantic editor services that correspond to the output of a
compiler, marking errors and warnings inside the editor. Modern IDEs even
take a step further and provide deeply integrated semantic editor services that
provide further functionality at the semantic level of a program, such as ref-
erence resolving, content completion, and refactoring.

Traditionally, a lot of effort was required for implementing language syn-
tax, semantics, and editor services of external DSLs. Parsers, data structures
for abstract syntax trees, traversals, transformations, and so on would be
coded by hand for each language. The development of editor services adds to
this burden, requiring developers to implement syntax highlighting, outline
views, content completion, and all the other language-specific editor services
for each DSL. This meant that a significant investment in time and effort was
required for the development of a new language. Specialized tools for DSL
and IDE engineering aim to address this issue.

1.2.3 Domain-Specific Language Engineering Tools

Language engineering tools significantly reduce the effort required for the
development of new external DSLs. They are aimed at specific aspects of
language engineering, and allow language engineers to write high-level spec-

4

ifications of DSL components in meta-languages rather than develop each com-
ponent by hand using general-purpose tools and programming languages.
The development of language engineering tools has been an active area of re-
search for many decades. We give a brief overview of the different categories
of tools.

Tools for syntax definition Writing and maintaining large parsers by hand
can quickly become a tedious and laborious job. Instead of writing a parser
by hand, the syntax can be described using a grammar – a DSL for syntax
definition. The syntax of most programming languages can be described us-
ing context-free grammars. For these grammars, it is possible to efficiently
generate a parser using a parser generator [Grune and Jacobs, 2008].

Parser generators are distinguished by what types of grammars they sup-
port and the performance guarantees they provide for generated parsers.
Mainstream parser generators such as Yacc [Johnson, 1975] and ANTLR [Parr
and Fisher, 2011] generate LR or LL parsers that can only be used for cer-
tain types of grammars, e.g. grammars with overlapping productions. Since
only the full class of context-free grammars is closed under composition, and
not any of its subclasses such as LL and LR, these parsers do not support
modularity of syntax definitions. Generalized parsers such as Generalized LR
(GLR) [Tomita, 1988] and Earley parsers [Earley, 1970] support the full class
of context-free grammars. Using scannerless parsing [Salomon and Cormack,
1989, 1995], Scannerless GLR (SGLR) even realizes this for lexical syntax (key-
words, strings, comments, and so on) [Visser, 1997c]. SDF [Heering et al.,
1989] is a grammar formalism notable for its use of GLR and subsequent use
of SGLR to support modular, declarative syntax definitions.

Tools for static and dynamic semantics The static semantics of a programming
language defines restrictions on the structure of valid programs that are hard
or impossible to express in a standard syntactic formalism. For example, a
restriction can be that variables should be assigned before use. The dynamic
semantics of a programming language describes the runtime behavior of pro-
grams. In this work we focus on meta-programming tools and frameworks
that describe the runtime behavior by transformation to existing languages,
in contrast to approaches based on formal semantics, which aim at modelling
the observable behavior of programs.

Meta-programming languages and frameworks make it much easier to
specify the semantics of a language, by providing a reusable abstraction layer
and supporting suitable programming paradigms. Examples based on rule-
based transformation systems include ASF+SDF [van den Brand et al., 2002],
Stratego/XT [Bravenboer et al., 2008], and TXL [Cordy et al., 1991]. These
systems use rewrite rules as a core paradigm for concise specification of trans-
formations. Examples based on attribute grammars include Eli [Kastens and
Waite, 1994] and JastAdd [Hedin and Magnusson, 2003]. These systems use
equations to concisely specify relations between attributes (or properties) of
abstract syntax tree nodes. Other systems include Polyglot [Nystrom et al.,
2003], a Java based extensible compiler framework, and Rascal [Klint et al.,
2009], a language for analysis and transformations.

Chapter 1. Introduction 5

Beyond syntax and semantics, developing IDE support is an increasingly
important aspect of implementing DSLs. We discuss IDE engineering next,
and subsequently the integration of language engineering and IDE engineer-
ing.

1.3 I D E E N G I N E E R I N G

For many current programming languages, IDEs have been developed sepa-
rately from a compiler or interpreter of the language. A common approach
is to use an extensible IDE platform such as Eclipse or Visual Studio, which
integrates IDE support for multiple languages using a plugin architecture.
Plugins consist of one or more services, such as editor services, which are reg-
istered using a component model such as the OSGi Service Platform [OSGi,
2009]. Many plugins already exist for these IDE platforms, providing IDE
support for specific languages as well as language-independent facilities such
as version control and build management systems. Still, even with extensible
IDE platforms, implementing state-of-the-art support for a new language is a
daunting undertaking, requiring extensive knowledge of the sometimes com-
plicated and highly interdependent APIs in general-purpose languages such
as C, C#, or Java, the extension mechanisms of the plugin framework, as well
as an in-depth understanding of the structure and semantics of the subject
language.

Specialized tools and frameworks for IDE development significantly sim-
plify the implementation of IDE services. Modern examples are Eclipse IMP
[Charles et al., 2007, 2009] and the Dynamic Language Toolkit [DLTK, 2007].
They introduce layers of abstraction and make use of parser generators and
code generation techniques to significantly simplify the development of an
IDE for an existing language.

A problem with separate development of IDEs and language compilers/in-
terpreters is that there tends to be significant overlap between them. For a
fully functional IDE that supports deeply integrated semantic editor services,
either an existing compiler should be integrated into the IDE, or the language
semantics should be re-implemented. A different approach is to integrate DSL
and IDE engineering, as we discuss next.

1.4 I N T E G R AT E D D S L A N D I D E E N G I N E E R I N G T O O L S

Tools such as Synthesizer Generator [Reps and Teitelbaum, 1989], Centaur
[Borras et al., 1989], and Lrc [Kuiper and Saraiva, 1998] were some of the first
to integrate the specification of language syntax and semantics for the auto-
matic generation of IDEs and compilers or interpreters. Combining these dif-
ferent aspects of language development had major advantages: a low thresh-
old for making an IDE, co-evolution of components shared between language
compiler or interpreter and IDE, and elimination of all redundancy between
those components.

6

A next step for comprehensive language engineering tools was self-appli-
cation and integration: providing not only IDEs for programmers but also
for meta-programmers. The Meta-Environment [Klint, 1993; van den Brand
et al., 2001] is notable for realizing this vision. It made it possible for meta-
programmers to define languages in a meta-IDE and generate IDEs for those
languages. It uses a combination of SDF for syntax definition and ASF to
specify language semantics, and provided a graphical interface for working
with language definitions and generating new programming environments.

IDE facilities The Meta-Environment and its predecessors generate code edi-
tors with syntax highlighting, an error message view, and optional integration
with transformations or other tools. However, the generated editors did not
yet support deeply integrated semantic editor services, as the tools provided
limited means to expose the semantics of a language to be used with such
services. In addition, there was much debate at the time as to which editing
paradigm to use: free text editing, as applied in plain text editors, or syntax-
directed editing, where edit operations are directed by the syntactic structure
of the language. Syntax-directed editors were a promising direction for in-
creased language sensitivity in editors at the cost of flexibility [Waters, 1982;
Shani, 1983; Khwaja and Urban, 1993]. This design choice helped with the
automatic generation of editors from a language specification, but provided
an editing environment that is constrained in comparison to current IDEs that
parse program text with error recovery as it is typed. In the case of the Meta-
Environment, a hybrid approach was chosen, where users could select a part
of the program as the “focus” that could be textually edited [van Dijk and
Koorn, 1990]. Only text that could be parsed without syntax errors could
leave the focus mode, in order to ensure that there was always a syntactically
correct snapshot of the edited program.

Language Workbenches Language workbenches are a new generation of lan-
guage engineering tools that aim to combine language and IDE specifica-
tion [Fowler, 2005a, 2011]. They are distinguished by their strong focus on IDE
support and specialization for DSLs rather than general-purpose languages.

By focusing on the construction and maintenance of new DSLs, rather
than on the implementation of existing, general-purpose languages, language
workbenches need not be concerned with supporting idiosyncrasies of exist-
ing language implementations such as specific preprocessor schemes, multi-
ple language dialects, or irregular type systems. Instead, they aim to provide
specialized facilities to increase the cost-effectiveness of DSLs.

The field of language workbenches is still young, but awareness of the need
and the benefits of these tools is increasing both in the research community
and in industry. Notable language workbenches originating in the former
category include EMFText [Heidenreich et al., 2009a] and MontiCore [Krahn
et al., 2008]; workbenches in the latter category include MPS [Voelter and
Solomatov, 2010] and Xtext [Efftinge and Voelter, 2006].2 Each provides novel,

2A more extensive overview of current language workbenches and a comparison to our work
is given in Section 4.7.

Chapter 1. Introduction 7

unique qualities and innovations. For example, EMFText is notable for its
derivation and refinement of concrete syntax; MontiCore for its combination
of syntax and editor service specification; MPS for its extensive support for
modular language definitions; and Xtext for its wide range of editor services.
However, they also share a certain degree of pragmatism in avoiding a number
of fundamental language engineering issues. Allegorically, we name seven
examples:

• Using mainstream parser generators such as ANTLR, having an excel-
lent implementation and support for error recovery, but being restricted
to LL (or LR) grammars and providing no support for composition;

• or, forgoing the parsing challenge altogether and revisiting syntax-
directed editing, in the form of projectional editing;

• using a general-purpose language such as Java rather than a DSL to
implement the more advanced editor services;

• using a general-purpose language such as Java rather than a DSL for
transformations on abstract syntax;

• or, forgoing transformations on the abstract representation and directly
generating code;

• using string-based template engines rather than syntactically safe meta-
programming systems for code generation;

• providing only general-purpose tools such as JUnit for testing DSL im-
plementations.

Although these examples characterize the state of the practice, there are some
exceptions. In particular, MPS provides its own support for syntactic normal-
ization rules for local-to-local transformations, and bases its editor services on
projectional editing. Xtext provides the Xtend language for transformations,
an imperative language that incorporates most of the Java language and adds
features such as string-based template syntax and multiple dispatch. Fully
addressing the underlying language engineering issues together poses sev-
eral research challenges, as outlined next.

1.5 C H A L L E N G E S A N D R E S E A R C H Q U E S T I O N S

In the preceding sections we have argued that DSLs have great potential for
productivity gain and described techniques and tools that help realize this
potential. Language workbenches integrate multiple techniques and tools
for language and IDE specification into a comprehensive, interactive envi-
ronment. Current implementations lack techniques for applying meta-DSLs
for specification of declarative syntax definitions, language semantics, trans-
formations, and language tests, that could further support this combination
of specifying languages and IDEs.

8

In this thesis we focus on techniques to realize a language workbench that
facilitates the use of high-level, syntactic and semantic language definitions
based on meta-DSLs. The main research goal and subject of this thesis can be
formulated as follows:

Introduce abstractions for high-level, declarative language definitions, from
which extensible, scalable language implementations with IDE support can be
generated. Support those abstractions with techniques that realize an integrated,
interactive language engineering environment.

The focus of this work has been on three main research themes:

• Applying domain-specific languages for declarative specification of lan-
guages and IDEs;

• supporting declarative syntax definition for generating a parser-based,
interactive development environment;

• and providing interactive meta-tooling support, exploring the applica-
tion of modern IDE technology to DSL engineering.

Below, we discuss these viewpoints and formulate the research questions that
drive the work presented in this thesis. In Chapter 9, we revisit these ques-
tions and present our conclusions.

1.5.1 Domain-Specific Languages For Declarative Specification of Languages
and IDEs

Our work follows in a line of research aimed at automatic generation of lan-
guage implementations. It has been our aim to use as much existing tech-
nology as possible, and to determine what programming techniques and id-
ioms, language primitives, and abstractions are needed to employ language
implementation technology for high-level specification of both languages and
modern IDEs. In particular, our work makes use of the Stratego/XT program
transformation suite [Bravenboer et al., 2008], which includes the Stratego pro-
gram transformation language and SDF [Heering et al., 1989; Visser, 1997c] for
syntax definition. Using the MetaBorg approach, the tool suite can be effec-
tively applied to composable language specification [Bravenboer and Visser,
2004]. Where previous work emphasized batch tools, we focus on interactive
tools instead. In previous work, Stratego has only been applied for generating
batch-based, command-line transformation systems before. SDF, however, has
been used interactively in the Meta-Environment, but it could only parse and
process programs in a fully syntactically correct state.

Language modularity and extensibility Key to the efficient development of
languages and IDEs are abstraction, to eliminate the accidental complexity of
interpreter, compiler, and IDE implementation, modularity, to reuse definitions
of language and editor components, and extensibility, to customize existing

Chapter 1. Introduction 9

components. To explore these themes, our research begins with a case study
in modular language design.

Language extensions can increase the expressivity of programming lan-
guages, by introducing abstractions for common programming tasks or for
tasks in a certain domain. For instance, an example of a language exten-
sion defined using MetaBorg is SWUL, a language extension for constructing
user interfaces based on the Swing framework [Bravenboer and Visser, 2004].
MetaBorg provides a general approach called for introducing language exten-
sions, independent of a particular host language, and without restrictions on
the syntax or on the context-sensitivity of the language extension.

The MetaBorg approach is based on source-to-source program translation,
translating language extensions to the base language. Using source-to-source
translation, it is loosely coupled to the base compiler or interpreter. This
approach ensures portability of languages extensions and robustness against
changes in the base language implementation. It also helps language engi-
neers in rapid prototyping, as they need only basic knowledge of the language
structure and semantics, and can abstract over the underlying implementation
of the existing compiler or interpreter. A disadvantage of this approach is that
source-to-source translators are restricted to only using the surface syntax of
a language, and cannot adapt the internal stages and components of a base
compiler, for example to support separate compilation or to make use of low-
level primitives of the platform. For instance, in the case of Java, the surface
syntax of the language does not expose JVM platform features such as jump
instructions, unbalanced synchronization, and debugging information. This
leads to our first research question:

Research Question 1

How can modular language plugin definitions abstract over the implementa-
tion architecture of a particular programming language? Can such plugins use
lower-level features provided by the target platform?

To answer this question, Chapter 2 investigates the design and application of
an open compiler for the Java language that exposes its platform primitives
(i.e., Java bytecode instructions) in the source language. We compare the im-
plementation of language extensions such as traits, partial classes, and iterator
generators based on this model to traditional open compiler approaches.

Portability of language definitions Given high-level, modular language defini-
tions, our aim is to generate a combination of artifacts that perform traditional
interpretation or compilation tasks and artifacts that provide IDE support.
The latter entails generating IDE plugins for use in an extensible IDE plat-
form such as Eclipse. Eclipse is based on Java, while our meta-DSL is based
on C. As a first step, a study is needed to identify the challenges in porting a
meta-DSL and techniques that can efficiently address them.

A central activity in retargeting a DSL to a new platform is usually the
introduction of a new compiler back end. The back end translates the DSL
to the platform’s language or instruction set. Beyond that, operating system-
level operations, calls to other executables, performance assumptions, and

10

uses of the file system, specific to the original platform, must be reconsidered.
Unfortunately, these concerns are pervasive in DSLs that an extensive exist-
ing code base and a collection of standard libraries that provide functional
abstractions for common tasks. The challenge in porting such a DSL lies in
minimizing or avoiding the need to manually adapt this existing code base.
This leads to the following research question:

Research Question 2

How can DSLs be efficiently ported to another platform, taking into consid-
eration their reliance on platform-specific operations and characteristics? Is it
possible to do so without changing existing DSL programs and libraries written
in the language?

Chapter 3 identifies idioms for using aspect-oriented programming [Kiczales
et al., 1997] to address portability concerns of language implementations. We
study the application of these idioms by porting the Stratego language to the
Java platform.

Abstractions for combined specification of languages and IDEs Modern IDEs
support well over a dozen distinct, language-specific syntactic and semantic
editor services. These range from services that rely purely on the lexical syn-
tax of the language, such as automatic comment insertion, to those relying
on the context-free syntax, such as syntax highlighting and code folding, to
deeply semantic services, such as content completion, which rely on the se-
mantics of the language. Current language definition formalisms do not yet
provide the means to specify these editor services, in particular those that rely
on deep integration with the semantic definition of the language.

Because of the highly language-specific nature of modern editor services,
they depend on a combination of syntactic and semantic properties of lan-
guages. Consequently, a risk for the implementation of these services is re-
dundancy between different services and with the language definition. For
example, syntactic services such as syntax highlighting and the outline view
are often implemented by writing regular expressions, which duplicates func-
tionality also provided by the parser. Another risk is tight coupling to the
implementation, i.e. the parser, and potentially even the parse error recovery
strategy for robust editor service implementations. In the case of deeply inte-
grated semantic editor services, services depend on properties of the language
semantics that are not normally exposed with batch-based tools such as com-
pilers. Even at the implementation level, many compilers work with symbol
tables that map name references to types, and are only in memory when con-
sidering a certain scope. The full name analysis must be exposed for services
such as reference resolving and content completion. Ultimately, abstractions
for high-level specifications of these services are needed that balance reuse
and separation of concerns, leading to the following research question:

Chapter 1. Introduction 11

Research Question 3

How can editor service specifications be integrated into syntactic and semantic
specifications of DSLs, balancing reuse and separation of concerns? How can
language analysis components be structured to expose an interface for use by
semantic editor services?

To address this question, Chapter 4 describes the architecture of the Spoofax
language workbench and investigates idioms for language definitions that
combine syntax, semantics, and editor services. In addition, Chapter 6 intro-
duces language-independent techniques for implementing parser-based edi-
tor services.

Abstractions for semantic analyses Semantic analyses are important for un-
derstanding and transforming programs. Attribute grammars are a powerful
formal specification notation for tree-based computation, particularly for se-
mantic analysis and processing of software languages [Paakki, 1995]. They
use declarative equations to specify the functional relationships between at-
tributes (or properties) of abstract syntax tree nodes.

Many extensions of attribute grammars have been proposed that abstract
over commonly occurring patterns, in particular supporting attribution pat-
terns with non-local dependencies, such as copy rules, collection attributes
[Boyland, 2005], and circular attributes [Boyland, 1996; Magnusson and Hedin,
2007]. With these extensions, attribute grammars are highly effective for con-
cise specification of classic data-flow analyses such as live variables and reach-
ing definition analysis [Nilsson-Nyman et al., 2008].

Current extensions of attribute grammars are implemented as part of an
attribute grammar evaluator. An open issue is to provide abstractions for the
specification of attribute grammar extensions rather than provide attribute
grammars extensions as part of an attribute grammar evaluator. By provid-
ing a set of primitives to specify extensions rather than directly providing the
extensions, new abstractions could be quickly implemented as new idioms
are identified [Steele, 1999]. Unfortunately, no well-defined set of such primi-
tives has been defined yet, and they are not linguistically exposed in attribute
grammar languages. This leads to the following research question:

Research Question 4

Is it possible to generalize over common attribute grammar abstraction mecha-
nisms? What primitives are needed for this generalization? Given these primi-
tives, is it possible to introduce new abstractions for common analyses of DSLs?

Chapter 5 investigates the combination of the attribute grammars and strate-
gic programming to answer this question. We apply the approach to exist-
ing idioms from the attribute grammar literature and study its application in
grammar analyses and transformations for parse error recovery in Chapter 6.

12

1.5.2 Declarative Syntax Definition in Interactive Environments

The SDF syntax definition formalism allows for declarative, composable syn-
tax definitions. These properties are supported by the scannerless generalized-
LR (SGLR) algorithm [Visser, 1997b] used for parsers generated from SDF def-
initions. Using a combination of scannerless parsing [Salomon and Cormack,
1989, 1995] and generalized-LR parsing [Tomita, 1988; Rekers, 1992] it sup-
ports the full class of context-free grammars for both lexical and context-free
syntax.

Parsers are at the heart of the implementation of editors in modern IDEs.
Modern IDEs use a parser to obtain the syntactic structure of a program with
every change that is made to it, ensuring rapid syntactic and semantic feed-
back as a program is edited. As programs are often in a syntactically invalid
state as they are edited, parse error recovery is needed to diagnose and report
parse errors, and to construct a valid AST for syntactically invalid programs.
Thus, to successfully apply a parser in an interactive setting, proper parse
error recovery is essential.

Parse error recovery for generalized parsers such as SGLR has been an
open issue. The scannerless, generalized nature of SGLR poses challenges for
the diagnosis and recovery of errors. First, generalized parsing implies pars-
ing multiple branches (representing different interpretations of the input) in
parallel. Syntax errors can only be detected at the point where the last branch
fails, which may not be local to the actual root cause of an error, increasing
the difficulty of diagnosis and recovery. Second, scannerless parsing implies
that there is no separate scanner for tokenization and that errors cannot be re-
ported in terms of tokens, but only in terms of characters. Moreover, based on
characters, common error recovery techniques based on token insertion and
deletion are ineffective, as many insertion or deletions are required to mod-
ify complete keywords, identifiers, or phrases. Together, these two challenges
make it harder to apply traditional backtracking error recovery approaches.

For use in a language workbench, an added criterion for an error recovery
implementation is that it should require minimal effort from language engi-
neers. IDEs have often used hand-written parsers in the past, or, in the case of
Eclipse’s Java editor, parsers with manual customization of the recovery be-
havior. For a language workbench, manual implementation or customization
of a parser is an undesirable distraction that breaks the abstraction provided
by a syntax definition;

Research Question 5

What techniques are needed to efficiently diagnose and recover from syntax er-
rors with scannerless, generalized parsers? Is it possible to support error recov-
ery without breaking the abstraction of pure and declarative syntax definition?

Chapter 6 introduces techniques for automatic relaxation of grammars to ac-
cept syntactically incorrect inputs, in order to diagnose and recover from syn-
tax errors. We investigate the combination of this technique with adaptations

Chapter 1. Introduction 13

of the parsing algorithm for backtracking and layout-sensitive parsing, in or-
der to efficiently recover from syntax errors in a language-independent fash-
ion.

1.5.3 Interactive Meta-Tooling Support for Language Engineering

Meta-programming with concrete object syntax Most meta-programming sys-
tems operate on the abstract syntax of an object language, using a structured
representation of programs rather than a textual one. A disadvantage of work-
ing with abstract syntax is often its verbosity and unfamiliarity compared to
the concrete syntax of a language. A solution is provided by meta-programming
with concrete object syntax [Klint, 1993; Visser, 2002], where the concrete syntax
of the language is embedded in the meta language. Quotations of concrete
syntax fragments and anti-quotations for meta-level expressions and variables
can then be used to manipulate the abstract representation of programs. Vis-
ser [2002] described a general architecture for introducing concrete syntax for
any object language into any meta language by relying on the compositional-
ity provided by SDF and SGLR parsing.

A usability problem of concrete syntax embedding is that quotations are
often ambiguous. For example, a quoted Java code fragment |[i = 2]| can
either be an assignment expression, part of a local variable declaration, or even
an annotation element initializer in abstract syntax. One approach to resolve
these ambiguities is to require developers to write explicit tags or type names
that indicate the syntactic category, e.g. writing Expr |[i = 2]|, using the
tag Expr to indicate that the quotation contains an expression. An open is-
sue with this approach is discoverability of these names, as they depend on
the (grammar) implementation and are not part of the concrete syntax of a
language. If a fragment has multiple possible interpretations, and it is not
clear from the context which one is correct, then only the developer can re-
solve it. Based on an automated diagnosis of ambiguities, an IDE could assist
developers in resolving ambiguities, leading to the research question:

Research Question 6

Can ambiguities in concrete syntax quotations be automatically diagnosed in
order to determine the possible syntactic disambiguations? Can an IDE for
meta-programming provide unobtrusive, interactive feedback based on such a
diagnosis?

To answer this question, Chapter 7 describes how a generalized parser can be
used to recognize all possible interpretations of quotations and investigates
how to diagnose these, and how to systematically provide textual disambigua-
tion options. We study the application of this approach based using a set of
existing meta programs that use quotations of different object languages.

Abstractions for language definition testing Testing is one of the most important
tools for software quality control and inspires confidence in software [Beck,
2003]. Additionally, tests can be used as a basis for an agile, iterative de-

14

velopment process by applying test-driven development [Beck, 2003]. The ap-
plication of general-purpose testing techniques and frameworks such as JU-
nit [Hamill, 2004] requires a significant investment in language-specific in-
frastructure for writing test cases for syntax, static semantics, and editor ser-
vices. Current research in automatic generation of test suites for language im-
plementations [Boujarwah and Saleh, 1997; Kossatchev and Posypkin, 2005]
focuses on testing complete compiler implementations, and is ineffective for
testing language definitions as they are developed.

Language workbenches provide language engineers with the ability to in-
teract with a language definition through the use of an editor. A common
practice among language engineers is to maintain a “scratch pad” with some
example program that focuses on new features that are under development.
Language engineers can interact with it in various ways. For example, they
can introduce type errors (“does the type checker catch this?”), control-click
on an identifier (“does this hyperlink point to the right place?”) or gener-
ate and run code for the example. An open issue is to provide a systematic
approach to language testing in language workbenches.

Challenges for low-threshold language testing are to provide an abstraction
over the implementation details of a particular language implementation and
to provide the same level of interactivity and responsiveness as ad hoc tests
in a language workbench. This leads to our last research question:

Research Question 7

Is it possible to define a general abstraction for systematic testing of DSL defi-
nitions? How can IDEs facilitate the development of DSL tests?

Chapter 8 describes the design of a parametric testing language that can be in-
stantiated for a specific DSL, investigating how to address testing of different
aspects of languages from both a language design and a tooling perspective.

1.6 A P P R O A C H

The core of our research method is to propose new concepts, techniques, and
tools, to address open questions in the area of software and language engi-
neering. Our work has a strong emphasis on tools and automation, and has
resulted in the development of several open-source tools, in particular Aster,
Spoofax, STRJ, and The Dryad Compiler, as well as contributions to the exist-
ing JSGLR, Kiama, Stratego/XT, SugarJ, and WebDSL projects.3

The aim of our project is to collect techniques, methods, and tool sup-
port for domain-specific language engineering that improve the productivity
of language engineers, based on dimensions such as understandability, main-
tainability, reliability, portability, compositionality, and ease of development
of software language designs. Key to progression along these dimensions is
abstraction in the form of linguistic constructs that provide increased expres-
siveness or in the form of tools that abstract over common idioms or address

3See http://lclnet.nl/software/phd/.

Chapter 1. Introduction 15

http://lclnet.nl/software/phd/

common problems that exist in a domain. Research in programming lan-
guage abstractions, e.g. the line of research in attribute grammars outlined
above [Boyland, 1996, 2005; Magnusson and Hedin, 2007; Nilsson-Nyman
et al., 2008] aims at identifying idioms and problem areas and showing for
representative case studies how these can be better supported with new ab-
stractions. We use critical discussions on the findings to achieve analytical
generalizations of the results and to show how it refines previous work. A
summary of how the approaches of the core chapters have been evaluated is
given in Section 9.2.

Our research is supported by tool implementations that realize the abstrac-
tions, and are amenable to quantitative metrics such as performance met-
rics. In our work we measured the performance of parsing and recovery in
Spoofax, attribute evaluation in Aster and Kiama, and compilation in STRJ,
giving an indication of practicality of an approach. To evaluate the developed
tools, we apply them to projects of a realistic, representative scale. This re-
quires a level of implementation maturity beyond that of prototypes, and in
turn, application to real projects that are not throwaway applications. From
these studies, new insights into an approach can be gained.

The MoDSE project4 has been a driving force for the application of tools
such as Spoofax in realistic, sizable projects. The WebDSL project, first de-
veloped using the Stratego/XT as a batch processor [Visser, 2007], has been
a particularly important project, driving research into modular language de-
sign [Hemel et al., 2008, 2009; Groenewegen and Visser, 2008, 2011] and even-
tually static checks in an IDE environment [Kats and Visser, 2010b; Hemel
et al., 2011]. The Acoda [Vermolen et al., 2011], mobl [Hemel et al., 2009],
and SugarJ projects [Erdweg et al., 2011a,b] were developed primarily using
Spoofax. Beyond these projects that use Spoofax as a testbed for research,
we attempt to develop communities of users around our tools that work with
them and provide feedback to steer further development. Additionally, we
apply our tools in education. Spoofax has been used in courses on model-
driven software development and compiler construction, where students cre-
ate a complete compiler and IDE plugin in a single semester. Section 4.6 re-
ports on further experience and other projects that used Spoofax as a testbed
for new research and development. This rich application experience resulted
in new research directions, following from questions such as: How to support
semantic editor services without reimplementing the language semantics in
Java? How to get error recovery in the editor? Can we abstract over the
manual work needed for writing language definition tests?

1.7 O R I G I N O F C H A P T E R S

The core chapters in this thesis are directly based on peer-reviewed publica-
tions at conferences or in journals on programming languages and software
engineering. As such, each chapter has distinct core contributions, but also

4NWO/Jacquard project MoDSE: Model-Driven Software Evolution (MoDSE), 2006–2012,
http://researchr.org/bibliography/modse/.

16

http://researchr.org/bibliography/modse/

contains some redundancy to ensure they are self-contained. This redun-
dancy has not been eliminated to ensure the extended and revised papers can
be read independently.

The author of this thesis is the main contributor of all chapters except Chap-
ter 6, being responsible for most of the effort involved in implementing the
approach, performing experiments, and writing the text. Chapter 6 is joint
work with Maartje de Jonge and Emma Söderberg, incorporating the OOP-
SLA 2009 paper on error recovery by Kats et al. [2009a], for which the balance
of the work was in favor of the thesis author, and the SLE 2009 paper by
de Jonge et al. [2009] for which the balance was in favor of De Jonge.

• Chapter 2 is an updated version of the OOPSLA 2008 paper Mixing
Source and Bytecode: A Case for Compilation by Normalization [Kats et al.,
2008a].

• Chapter 3 is a revised and extended version of the SCAM 2010 pa-
per Encapsulating Software Platform Logic by Aspect-Oriented Programming
[Kats and Visser, 2010a].

• Chapter 4 is an updated version of the OOPSLA 2010 paper The Spoofax
Language Workbench: Rules for Declarative Specification of Languages
[Kats and Visser, 2010b]. This paper won the best student paper award,
presented to the best paper that has a (PhD) student as its main author.

• Chapter 5 is an extended version of the CC 2009 paper Decorated At-
tribute Grammars: Attribute Evaluation Meets Strategic Programming [Kats
et al., 2009c].

• Chapter 6 incorporates and extends the OOPSLA 2009 paper on Pro-
viding Rapid Feedback in Generated Modular Language Environments
[Kats et al., 2009a] and the SLE 2009 paper on Natural and Flexible Error
Recovery for Generated Parsers [de Jonge et al., 2009], and has been submit-
ted to Transactions on Programming Languages and Systems (TOPLAS).

• Chapter 7 is an extended version of the SLE 2010 paper Interactive Disam-
biguation of Meta Programs with Concrete Object Syntax [Kats et al., 2011a].

• Chapter 8 is published as the OOPSLA 2011 paper Integrated Language
Definition Testing: Enabling Test-Driven Language Development [Kats et al.,
2011b].

Chapter 1. Introduction 17

18

2
Mixing Source and Bytecode:
A Case for Compilation by Normalization

A B S T R A C T

Language extensions increase programmer productivity by providing concise,
often domain-specific syntax, and support for static verification of correctness,
security, and style constraints. Language extensions can often be realized
through translation to the base language, supported by preprocessors and
extensible compilers. However, various kinds of extensions require further
adaptation of a base compiler’s internal stages and components, for exam-
ple to support separate compilation or to make use of low-level primitives
of the platform (e.g., jump instructions, unbalanced synchronization, debug-
ging information). To allow for a more loosely coupled approach, we propose
an open compiler model based on normalization steps from a high-level lan-
guage to a subset of it, the core language. We developed such a compiler
for a mixed Java and (core) bytecode language, and evaluate its effectiveness
for composition mechanisms such as traits, as well as statement-level and
expression-level language extensions.

2.1 I N T R O D U C T I O N

Programming languages should be designed for growth in order to evolve ac-
cording to the needs of the user [Steele, 1999]. General-purpose programming
languages offer numerous features that make them applicable to a wide range
of application domains. However, such languages lack the high-level abstrac-
tions required to adequately cope with the increasing complexity of software.
Through the introduction of language extensions, it is possible to increase the
expressivity of a language, by turning programming idioms into linguistic
constructs. Language extensions allow for static verification of correctness,
security, and style constraints. Language extensions may be domain-specific in
nature, such as embedded SQL, or may be general purpose in nature, such as
traits or the enhanced for loop, enumerations, and other features added in
Java 5.0.

The mechanisms available for realizing language extensions determine the
quality of extension implementations and the effort needed for their construc-
tion. If language extensions can be realized with relative ease, then building
new abstraction mechanisms can be used in the software development process
to incorporate programming idioms and avoid boilerplate code. The quality
of a language extension comprises robustness (are error messages reported on
the extended language? is code generation complete?), composability (does

19

the extension combine with other extensions?), and the quality of the gener-
ated code. Finally, separate compilation, i.e. binary distribution of compiled,
statically verified (library) components, is an important feature to reduce com-
pilation time.

The creation of a language extension implies the reuse of an existing im-
plementation of the base language. Generally, such reuse can be categorized
as either black box reuse of a compiler by adding a preprocessor, or white box
reuse by means of a deep integration with the compiler implementation.

Language extension by preprocessing A preprocessor transforms a program in
an extended language into a program in the base language. Examples of pre-
processors include annotation processors such as XDoclet [XDoclet, 2000] and
Java’s APT [Sun Microsystems, 2004], SQLJ [Melton and Eisenberg, 2000] an
embedding of SQL in Java, and StringBorg [Bravenboer et al., 2010], a generic
approach for embedding languages such as SQL. As they are employed as a
separate tool, rather than requiring integration into a compiler, preprocessors
are highly portable. By avoiding direct compiler extension, their implemen-
tation only requires basic knowledge of a language’s structure and semantics,
not of its compiler. Thus, the compiler is considered as a black box; only its
published interface — the syntax of the programming language — is used,
and the internal architecture of the compiler is hidden. This separation of
concerns makes preprocessors well suited for rapid implementation or proto-
typing of language extensions.

While preprocessors are an attractive, lightweight solution to language ex-
tensibility, they are not considered a mature solution for production imple-
mentation of languages. Production of a parser that is exactly compatible with
the base language is not always a trivial undertaking. The lack of a (complete)
source level semantic analyzer results in error messages by the base compiler
about code fragments generated by the preprocessor, rather than the source
code written by the programmer. Separate compilation is only possible if
the compilation units of the extended language align well with those of the
base language. This fails in the case of new modularity abstractions. In other
words, considering the base compiler as a black box condemns the preproces-
sor implementer to reimplement the front end of the base compiler.

Modifying an existing compiler To avoid reimplementation efforts, language
extensions are often implemented by extension of the front end of a com-
piler. This level of integration ensures that existing compiler components,
such as a parser and semantic analysis, can be reused in the extended com-
piler. By generating code in the front end language, it can then be further
compiled using the base compiler. Traditional monolithic compilers are typ-
ically not designed for extensibility, and adding a new feature may require
extensive refactoring of the implementation. Since such refactorings are not
incorporated upstream, this effort needs to be repeated with each release of
the compiler. Extensible compilers, such as Polyglot [Nystrom et al., 2003],
ableJ [Van Wyk et al., 2007], and the JastAdd extensible Java Compiler [Ek-
man and Hedin, 2007], are designed for extensibility with the principle that

20

Figure 2.1 The front end extension pattern, applied by many conventional exten-
sible compilers.

the implementation effort should be proportional to the size of the language
extension. This front end extension pattern is illustrated in Figure 2.1. However,
even these systems do rely on white box extension, by exposing their internal
structure.

Extending a compiler purely by transformation to the base language is
sometimes inadequate. Compilers typically consist of multiple stages, pars-
ing and gathering semantic information in the early stages (the front end),
and generating and optimizing code in later stages (the back end) [Aho et al.,
2006]. This strict separation of stages is imposed to ensure straightforward
modularization and reuse of compiler components. As such, some compilers
for different languages share a common intermediate language and associ-
ated back end. Only the final stage or stages of a compiler back end actually
output the target-machine code.

Integration into the back end makes it possible to also manipulate com-
piled code. This can be necessary to output specific instruction sequences
or clauses not otherwise generated by the base compiler. For example, for
Java, the front end does not expose a ‘goto’ operation, unbalanced synchro-
nization primitives, or means of including debugging information. The back
end of a compiler also forms an essential participant in composition of source
and compiled code. Consider language extensions aimed at modularity, such
as traits [Ducasse et al., 2006] and aspects [Kiczales et al., 1997]. To support
separate compilation, such extensions require integration into a compiler’s
back end. Separate compilation enables distribution of modules in compiled
form, or weaving of code into compiled classes. Using a classic, multi-staged
compiler, implementing such extensions is a demanding task that requires

Chapter 2. A Case for Compilation by Normalization 21

Figure 2.2 Modular extension of a normalizing compiler.

in-depth understanding of the compiler. Extensions that span across multi-
ple compilation stages get tangled throughout the different components of a
compiler, and create a large dependency on its implementation.

Mixing source and bytecode Summarizing, the decision to extend a compiler
using a simple, front end based approach, or a more deeply integrated ap-
proach, comes down to a choice between black box or white box reuse of a
base compiler, each with their own drawbacks. Rather than dismissing pre-
processors, we want to embrace their simplicity and modularity and propose
a compiler architecture that deals with their flaws.

In this chapter, we propose an open compiler architecture based on mixing
source and bytecode in order to enable compilation by normalization. That is, the
base language is a combination of the high-level source language (Java) and
the low-level bytecode core language. This means that it is possible to use
bytecode primitives, such as the goto instruction, directly from Java, as in the
statement

if (condition) `goto label;

where the backtick (`) operator is used to distinguish between the syntax of the
two constituent languages. Similarly, source code expressions and statements
can be embedded in bytecode, nested to arbitrary depth. The compiler for this
mixed base language normalizes an input program in the combined language
to a program in the bytecode core language. Thus, the language produced as
output of the compiler is a subset of the input language.

This architecture combines the light weight construction of extensions us-
ing a preprocessor, with the access to the compiler back end of a compiler
extension. Without knowing the internals of the compiler, a preprocessor can
generate code in the core language where needed, as well as the extended
input language where possible (see Figure 2.2). In other words, an extension

22

preprocessor extends the base compiler by adding transformations from the
extended language into a mix of low-level and high-level code, as is conve-
nient for the definition of the particular extension. The idea of transformation-
based compilers is not new. In particular, Peyton Jones and Santos [1998] ap-
plied the idea in the implementation of the Glasgow Haskell Compiler GHC
in which compiler optimizations are formulated as transformations on core
language constructs. The front end of the compiler consists of type analysis
and simple desugarings. However, in GHC the core language is not a subset
of the compiler’s input language. As a result it is not possible to feed the
output of the compiler back into the compiler. In our approach the complete
compiler can be used as a normalization tool, which allows the construction
of pipelines of preprocessors, and the implementation of separate compila-
tion for new abstraction mechanisms. By keeping track of origin information
when generating code, error messages produced later in the chain can refer
to the original source input.

To evaluate the notion of compilation by normalization, we have created
a prototype implementation of a Java compiler based on this principle. This
prototype, the Dryad Compiler, unifies the Java language with the underlying
bytecode instruction language. Extending a regular Java typechecker, we pro-
vide full typechecking for this combined language. Using the collected type
information, we introduce overloaded instructions to the bytecode language that
can be normalized to regular instructions, and facilitate code generation.

The contributions of this chapter are as follows:

• The introduction of a compiler architecture based fully on normalization
steps rather than multiple, independent stages.

• An implementation of this compiler architecture for a major program-
ming language.1

• Case studies that show how the approach can be used for compiler ex-
tensibility.

• A compact, polymorphic set of core bytecode instructions.

Outline We proceed as follows. In Section 2.2 we discuss the design of a
number of language extensions, evaluating how they benefit from compilation
by normalization when implemented as an extension of the Dryad Compiler.
We describe the syntax and semantics of the mixed Java/bytecode language
and the architecture of its compiler in Section 2.3. In Section 2.4 we discuss
how normalization rules incrementally transform the Java/bytecode language
and its extensions to the core language. In Section 2.5 we offer a discussion
of the architecture of the Dryad compiler, and compilation by normalization
in general. We present related and future work in Section 2.6, and finally
conclude in Section 2.7.

1The Dryad Compiler, an open source project available from http://strategoxt.org/
Stratego/TheDryadCompiler/.

Chapter 2. A Case for Compilation by Normalization 23

http://strategoxt.org/Stratego/TheDryadCompiler/
http://strategoxt.org/Stratego/TheDryadCompiler/

2.2 E X T E N S I O N S B A S E D O N T H E D RYA D C O M P I L E R

In this section, we discuss a number of compiler extensions for the Dryad
Compiler. We first discuss extension at the class level, with partial and open
classes in Section 2.2.1 and traits in Section 2.2.2. In Section 2.2.3 we discuss
how the principle of compilation by normalization can be applied at the state-
ment level for iterators, and in Section 2.2.4 we show how it can benefit the
implementation of expression-level extensions.

2.2.1 Extension with Partial and Open Classes

In Java, classes are defined in a single source file. Partial classes enable the
distribution of class members over multiple source files. Partial classes can
be used for separation of concerns, for example dividing GUI-related and
event-handling code, or as a way of modifying existing classes included in
a third-party application or library. Another application of partial classes is
merging generated code fragments, such as code generated from partial mod-
els [Warmer and Kleppe, 2006] or from modular transformations generating
code for specific aspects. Partial classes can be implemented relatively easily
as an extension of an existing compiler, by merging them to regular classes.

Open classes extend the notion of partial classes by allowing the extension
of compiled classes, rather than just classes in source code form. One im-
plementation of open classes for Java is provided by MultiJava [Clifton et al.,
2000, 2006]. MultiJava is derived from the Kopi Java Compiler, a fairly small
open-source implementation written in Java itself. This makes it a relatively
accessible candidate for such an extension. MultiJava uses different stages
that add to the existing stages of the Kopi compiler (i.e., parsing, importing
definitions, different typechecking stages, grouping of multi-methods, byte-
code generation). This required a significant part of the development effort
to be spent in understanding the base compiler. Clifton notes that this was
in fact the case, attributing this to a lack of documentation on Kopi [Clifton
et al., 2000].

Existing implementations of partial and open classes only allow the defi-
nition of classes that augment others in source form, merging them into ei-
ther source or compiled classes. A third scenario, merging together multiple
classes in compiled form, is not supported. This scenario can be applied to
use open classes for supporting separate compilation in compilers that target
the Java platform. Consider Figure 2.3a, where open classes facilitate merg-
ing of newly and previously compiled class fragments. In this architecture, a
compiler for a domain-specific language (DSL), for example producing GUI-
related code, is implemented as an extension of the Dryad Compiler. The
code it produces is processed by another extension, which merges the open
classes for final compilation.

The mixed source/bytecode language allows us to think of source and
bytecode classes as instances of a single language; there is no fundamental
difference in the merge process required for them. Figure 2.3b shows the

24

(a) Using open classes for incremental com-
pilation.

(b) Extending the Dryad Compiler to support
open classes.

Figure 2.3 Open classes.

architecture of the open classes extension. It merges together members of
class fragments, either in source or bytecode form. The resulting Java/byte-
code class (see Figure 2.4) is passed to the Dryad Compiler, which provides
the support for compilation of these composed fragments. This design al-
lows a straightforward implementation of the extension, no longer requiring
implementation-level knowledge of the open compiler it builds on. Compi-
lation of the merged classes is handled by the Dryad compiler; the extension
only provides the composition mechanism. Using the technique of source
tracing, on which we elaborate in Section 2.3.4, it maintains location informa-
tion relative to the original source files for compile-time errors and debugging
information.

2.2.2 Extension with Traits

Traits are primitive units of reusable code that define a set of methods that
can be imported into regular classes. Using a set of operators, traits can be
composed and manipulated. For instance, the with operator composes two
or more traits, and is also used to extend a class with the methods defined in
a trait (see Figure 2.5). Traits were originally introduced by Schärli et al. in
the context of Smalltalk [Ducasse et al., 2006]. They have since been ported
to statically typed languages, such as Java, C#, and Scala. To support traits
with separate compilation, they must explicitly specify their required methods,
i.e. all methods that are referenced but not provided by a trait.

Chapter 2. A Case for Compilation by Normalization 25

class Calculator {
// From Calculator_Operations.java
public void add() {
operation = new Add(getDisplay());
...

}

// From Calculator_Gui.class
`private setDisplay(int number : void) [

iload number;
...

]
...

}

Figure 2.4 Open classes merged to a single Java/bytecode definition.

class Shape with TDrawing {
Vertices getVertices() { ... }
...

}

trait TDrawing {
void draw() { ... }

require Vertices getVertices();
}

Figure 2.5 Example of a class Shape importing a trait TDrawing.

To the best of our knowledge, only Scala – which supports the feature na-
tively rather than in the form of an extension – supports separate compilation
of traits [Odersky et al., 2008]. This allows for statically verified, binary distri-
bution of traits in libraries, but requires a significantly different compilation
model than the source-to-source transformation commonly applied by imple-
mentations of traits.

To enable separate compilation to binary class files in our traits exten-
sion, we designed a compilation scheme translating traits to regular, abstract
classes. This way, required methods can be mapped to abstract methods. Al-
though we have no intention for the Java Virtual Machine (JVM) to load these
classes at run-time – traits are merely compile-time entities – this mapping
enables us to use the base compiler’s verification and compilation facilities
for abstract classes.

After traits are compiled, the resulting class files can be composed accord-
ing to the composition operators. For the with operator this means that a
trait’s methods are added to a client class. Similarly, the minus operator re-
moves methods from a trait. The rename operator renames a method dec-
laration and all occurrences of it in the core language invocation constructs.
Unlike in Java, the names used in these constructs are fully qualified and
unambiguous, making this a straightforward operation. The composition
operations are followed by a basic consistency check that confirms that all

26

Figure 2.6 Separate compilation of a trait (left) and a class importing it (right).

required methods are defined and that there are no duplicate definitions.
More extensive typechecking is performed by the base compiler. Consider
Figure 2.6, which illustrates the architecture of this extension. By leveraging
the Java/bytecode language for inclusion of compiled code, the extension re-
mains loosely coupled from the base compiler. Our implementation of traits
currently spans 104 lines of code2, making it a relatively lightweight imple-
mentation. Still, it includes support for separate compilation, consistency
checking, and source tracing. As it does not require implementation-level
knowledge of the base compiler, but only of its input language, the focus
shifts to these issues rather than on direct adaptation of the existing compila-
tion process.

2.2.3 Extension with Iterator Generators

Java 5.0 introduced the enhanced for loop, a language feature that allows pro-
grammers to iterate over collections. The Java compiler treats this as a form
of syntactic sugar, and translates it to a regular while loop that uses the
java.lang.Iterable and java.util.Iterator interfaces (see Figure 2.7).
As such, the enhanced for loop can be used to conveniently iterate over any
type that implements the Iterable interface.

Implementing the iterator interfaces is somewhat involved and follows a
common pattern with considerable boilerplate code. A complementary lan-
guage extension that deals with this problem is that of iterator generators, a
feature supported by other languages such as Python and Sather [Murer et al.,
1996]. Like the enhanced for loop, this feature abstracts away from the un-
derlying interfaces. Consider Figure 2.8, which uses it to define an iterator
method that splits a string at every space character. It loops over the results
of a call to String.split(), and uses the yield statement to return all sub-

2Not included is the syntax definition. Implemented as a stand-alone program, this figure
does include 47 lines of I/O code, imports, and comments.

Chapter 2. A Case for Compilation by Normalization 27

for (String s : getShortWords("foo bar")) {
System.out.println(s);

}

Iterator<String> it = getShortWords("foo bar").iterator();
while (it.hasNext()) {

String s = it.next();
System.out.println(s);

}

Figure 2.7 The enhanced for loop (top) and its desugared form (bottom).

strings with less than four characters as elements of the resulting iterator. The
iterator method operates as a coroutine: control is “yielded” back to the client
of the iterator at every yield statement. When the client requests the next
element, the iterator method is resumed after the last yield statement.

In earlier work, we implemented the yield statement as a source-to-source
transformation, abstracting over regular Java control flow statements.3 The
yield statement introduces a form of unstructured control flow: the method
can be entered at any arbitrary point it is used. To express this in a legal
Java program, the desired control-flow graph must be transformed to make
use of Java’s structured control flow statements, a non-trivial problem, also
faced when decompiling bytecode [Miecznikowski and Hendren, 2001]. We
accommodated for this by using a switch statement and case labels at every
point in the control flow graph. Since the Java switch statement can only
be used in a structured fashion (i.e., it disallows case labels inside blocks of
code nested in it), all existing control flow statements in the method must be
rewritten to become part of the switch. This turned out to require significant
effort, essentially re-implementing a considerable part of the existing Java
language.

The infomancers-collections library [Dov, 2008] aims to avoid the compli-
cations of source-to-source transformation. It effectively hides the language
extension from the Java compiler, by using a dummy yield() method that can
be invoked from anonymous classes that implement the iterator interfaces. A
regular Java compiler can then be used to compile the code, unaware of the
special semantics of these invocations. The resulting bytecode is then altered
by the library, replacing the dummy invocations with an actual implementa-
tion, modifying the (unstructured) control flow of the method. This is a rather
intricate process that requires the use of a bytecode manipulation library to
generate a new class. Since the Java compiler is oblivious to the special se-
mantics of the dummy invocations, it is unable to perform proper control
flow analysis during the initial compilation, which may lead to unexpected
results. In particular, compilers may optimize or otherwise generate code that
violates the stack-neutrality property of statements (see Section 2.3.3), which
can result in invalid programs after inserting new jump instructions.

In our approach, we treat the language extension as a form of syntactic
sugar that can be projected to the base language (i.e., Java/bytecode), just like

3As part of the java-csharp project, available from http://strategoxt.org/Stratego/
JavaCSharp/.

28

http://strategoxt.org/Stratego/JavaCSharp/
http://strategoxt.org/Stratego/JavaCSharp/

public Iterable<String> getShortWords(String t) {
String[] parts = t.split(" ");
for (int i = 0; i < parts.length; i++) {
if (parts[i].length() < 4) {

yield parts[i];
}

}
}

Figure 2.8 Iterator definition with the yield statement.

class ShortWords implements Iterator<String> {
int _state = 0;
String _value;
boolean _valueReady;

String _t;

String[] _parts;

int _i;

private void prepareNext() {
if (_valueReady || _state == 2) return;
if (_state == 1) `goto afterYield;

_parts = _t.split(" ");

for (_i = 0; _i < _parts.length; _i++) {

if (_parts[_i].length() < 4) {
_state = 1;
_valueReady = true;
_value = _parts[_i];

return; // yield value
afterYield:

}

}
_state = 2;

}

public String next() {
prepareNext();
if (!_valueReady)

throw new NoSuchElementException();
_valueReady = false;
return _value;

}

public boolean hasNext() {
if (!_valueReady) prepareNext();
return _valueReady;

}

public void remove() {
throw new UnsupportedOperationException();

}
}

Figure 2.9 Iterator definition, generated from Figure 2.8.

Chapter 2. A Case for Compilation by Normalization 29

the enhanced for loop. For this, the yield statement is rewritten to a return

statement to exit the iterator method, in conjunction with a small, bytecode-
based jump table at the beginning of the method for re-entry. Based on a
finite state machine model of the method, a field _state is maintained to
indicate the next method entry point. Consider Figure 2.9, which shows the
class that will be generated local to the original getShortWords() method.
It highlights all lines of code that directly correspond to the original method.
The prepareNext() method is central to this implementation, and includes
an adapted version of the original method body. Its control flow is adapted
by the addition of unstructured control flow primitives, in the form of byte-
code instructions. In this example, we implement this using a jump table and
goto instructions, embedded in Java using the backtick (`) operator. Alter-
natively, a tableswitch instruction could be used to form an unstructured
switch statement.

It is not possible to statically determine if the iterator will return a value or
not for a given state, and we cannot make assumptions on the order of invo-
cation of the Iterator.next() and Iterator.hasNext() interface methods.
Therefore, a call to prepareNext() is used in both these methods, caching the
value as necessary. To ensure persistence of local variables during the lifetime
of the iterator, all local variables must be replaced or shadowed by fields.

The amount of code required to define a custom iterator by implement-
ing the iterator interfaces (Figure 2.9) illustrates the increase in productiv-
ity that can be gained by abstracting over this using iterator generators (Fig-
ure 2.8). The projection to Java/bytecode that realizes this abstraction is rel-
atively straightforward, as it maintains the structure of the original method,
unlike in our earlier source-to-source approach. On the other hand, this ap-
proach also avoids the complexity of the low-level, purely bytecode-oriented
approach, eliminating the need for special libraries and using the convenience
and familiarity of the Java language for most part of the implementation.

2.2.4 Assimilating Expression-Level Extensions

Embedded domain-specific languages add to the expressivity of general-pur-
pose languages, combining domain-specific constructs with the general-pur-
pose expressivity of the host language. Examples include embedded database
queries, or integrated regular expressions. We have explored DSL embedding
with Java as a base language and described MetaBorg [Bravenboer and Visser,
2004], a general approach for DSL embeddings. In that context, we have
coined the term assimilation for the transformation that melds the embedding
with its host code. Assimilation preserves the semantics of language extension
constructs, while making it possible to compile them using the base language
compiler.

Small, statement- or expression-level language extensions are especially
well-suited for assimilation. They can often be assimilated locally to an im-
plementation in the host language (often API-calls), without disturbing the
surrounding code. However, for specific kinds of language extensions this is

30

System.out.println(e1 ?? e2);

(a) The ?? operator, with operands of type T.

System.out.println(
{| T lifted = e1; // evaluate e1 only once

if (lifted == null) lifted = e2;
| lifted
|});

(b) In-line assimilation to an expression block.

T lifted = e1;
if (lifted == null) lifted = e2;
System.out.println(lifted);

(c) Lifted to pure Java.

Figure 2.10 Assimilation using statement-lifting.

not possible. One class of such extensions is that of language extensions that
take the form of expressions but require assimilation to statements in the host
language (e.g., to use control flow constructs or declare local variables, which
is not possible in expressions). In-place assimilation to an expression does not
suffice in these cases, because Java and similar languages do not allow nest-
ing of statements in expressions. One technique to overcome this problem is
using an intermediate syntax in the form of expression blocks [Bravenboer and
Visser, 2004]. These enable the use of statements in expressions, facilitating
in-line expression assimilation.

Expression blocks take the form
{| statements | expression |}

where the statements are executed before the evaluation of the expression,
and the value of the expression block is the value of the embedded expression.
A separate, generally applicable normalization step in the form of statement-
lifting can be used to lift the statement component of the expression to the
statement level [Bravenboer and Visser, 2004]. Consider for example the C#
coalescing operator:

e1 ?? e2

This operator returns the value of expression e1 if it is non-null, or other-
wise the value of e2. It could be used in conjunction with Java’s nullable (or
“boxed”) types and its support for auto-unboxing, providing a default value
when converting to a non-nullable (i.e., primitive) type.

Consider Figure 2.10, which shows how the coalescing operator can be as-
similated to regular Java statements. In Figure 2.10a, the operator is used in a
method call. Using an expression block, it is straightforward to translate it in-
line to regular Java statements, as seen in Figure 2.10b. Finally, in Figure 2.10c,
the expression block is lifted to the statement level.

Unfortunately, proper statement-lifting is not trivial to implement: it re-
quires syntactic knowledge of every language construct that an expression may

Chapter 2. A Case for Compilation by Normalization 31

Iterator<Integer> it = ...;

for (int i = i0; it.hasNext(); i = it.next() ?? 0) {
...

}

(a) The coalescing operator in a loop.

Iterator<Integer> it = ...;

Integer lifted = next();
if (lifted == null) lifted = 0;
for (int i = i0; it.hasNext(); i = lifted) {

...
}

(b) Incorrect program after statement-lifting.

Figure 2.11 Statement-lifting in a for loop.

System.out.println(`[
push `e1;
astore lifted;
ifnull else;
push `e2;
goto endif;

else:
aload lifted;

endif:
]);

Figure 2.12 Assimilation of the ?? operator to bytecode.

appear in, including various statements, other expressions, and possibly other
language extensions. Furthermore, it requires semantic knowledge of the lan-
guage, as it is not always sufficient to simply move statements to the syntac-
tic statement level. For instance, the simple lifting pattern from [Bravenboer
and Visser, 2004] cannot be applied if the expression is the operand of short-
circuiting operators (e.g., || in Java) or the conditional of a for loop (see
Figure 2.11). In these cases, simply lifting the translated statements to the
statement level changes the semantics of the program.

In the bytecode core language, there is no statement level or expression
level. This distinction only exists in Java source code, and is simply a conse-
quence of the Java syntax. Thus, we can overcome this limitation by assimi-
lating the operator directly to the bytecode core language, using instructions
in place of the original operator (see Figure 2.12).

Given that the core language is enriched with constructs of the more con-
venient Java language, we can also apply the complete, mixed language to
synergistic effect and assimilate the operator in a more elegant fashion. Con-
sider Figure 2.13, which assimilates the coalescing operator to Java statements,
embedded in a bytecode block. In addition to these statements, we use a push

pseudo-instruction to place the lifted variable on the stack (we elaborate on
the role of the stack and the push instruction in Section 2.3.1). This value
forms the result of the expression, and is used as the argument of the call

32

System.out.println(`[
`T lifted = e1;
`if (lifted == null) lifted = e2;
push `lifted;

]);

Figure 2.13 Assimilation to bytecode-embedded Java.

to System.out.println. Like expression blocks, the bytecode fragment can
contain any number of statements and a single resulting expression, mak-
ing normalization of the expression block extension to a bytecode block triv-
ial. As such, this pattern effectively does away with the complications as-
sociated with statement-lifting, and thereby simplifies the implementation of
expression-level language extensions using statements.

2.3 R E A L I Z AT I O N O F T H E B A S E C O M P I L E R

The Dryad Compiler operates by normalization of the mixed Java/bytecode
language to its core (bytecode) language. We implemented a parser for the
language as an extension of the regular Java language, using the modular
syntax definition formalism SDF [van den Brand et al., 2002]. The language
is normalized through normalization rules expressed in the Stratego [Braven-
boer et al., 2008] program transformation language. In the remainder of this
section, we give an overview of the design of the language and its compiler.

2.3.1 Language Design

Key to compilation by normalization is the notion of a core language that is
– often incrementally – extended with new abstractions to form a rich, high-
level language. For the Dryad compiler, we build upon the existing bytecode
language, an assembly-like core language, and mix it with the standard Java
language [Gosling et al., 2005]. The two syntax forms are integrated using
the backtick operator `, which toggles the syntax form of a fragment of code.
Figure 2.14 gives an overview of the syntax of the language. In this figure we
use italics to refer to other symbols in the syntax, and an overline to indicate
lists of symbols (e.g., T x indicates a list of type/identifier pairs). For brevity,
we left out some of the more advanced Java language constructs. For mixing
of class, method, and field declarations, the ` notation is optional, and was
also left out from this overview.

The bytecode assembly language we use shares similarities with existing
languages such as Jasmin [Meyer and Downing, 1997] and its derivatives. It
provides a somewhat abstracted representation of the underlying binary class
format. For instance, it allows the use of symbolic names rather than relative
and absolute offsets for locals and jump locations. Like Jasmin, our represen-
tation allows constants to be used in-line, eliminating the need to maintain a
separate constant pool with all constants and types used in a class. Still, our
representation remains close to the underlying binary bytecode instructions.

Chapter 2. A Case for Compilation by Normalization 33

General
p ::= cd Program (start symbol)
T ::= C | void | int | long | double Types
| float | boolean | char | byte

Java
cd ::= class C extends C { fd md cd } Class declaration
md ::= C (T x) { super (e); s } | T m (T x) { s } Method/constructor decl.
fd ::= T f ; Field declaration
s ::= { s } Statement block
| e; Expression statement
| C x = e; Local variable declaration
| if (e) s else s | while (e) s | for (e; e; e) s Control flow
| return; | return e; Return statement
| throw e; Throw exception
| synchronized (e) { s } Synchronization
| try { s }catch(C x) { s } Exception handling
| l: Label

e ::= x = e | x Local variables
| (T) e Cast
| e + e | e - e Basic operators
| e.m (e) Method invocation
| new C (e) Object creation

Bytecode
cd ::= classfile C extends C fields f methods md Class declaration
md ::= C (T x : T) [I] | <init> (T x : C) [I] Method/constructor decl.
fd ::= f : T Field declaration
I ::= catch (l : C) [I] Exception handling
| (see Figure 2.15) Bytecode instruction

Mixing
s ::= `I | `[I] Bytecode statement
e ::= `I | `[I] Bytecode expression
I ::= `s | `[s] | push `e Embedded Java

Tracing
s ::= trace (o) [s] Statement trace
e ::= trace (o) [e] Expression trace
I ::= trace (o) [I] Instruction trace
md ::= trace (o) [md] Method trace
o ::= s @ loc | e @ loc | I @ loc | md @ loc Trace originating code
loc ::= path:i:i Location specification

Figure 2.14 Syntax for the mixed Java/bytecode language.

Most notably, it preserves the stack machine-based nature of the instruction set.
More abstract representations are for example provided by Soot [Vallée-Rai
et al., 1999], but this does not match our design goal of exposing the com-
plete core language functionality. Instead, we embrace the operand stack to
provide low-level operations, and use it for interoperability between the two
languages. Figure 2.14 shows the basic elements of the bytecode language,
while Figure 2.15 gives an overview of the instruction set. Note that this fig-
ure shows a reduced bytecode instruction set, using overloaded instructions,
on which we elaborate in Section 2.4.2. For compatibility, we also support the
full standard set of instructions, which can be mapped to the reduced set.

34

Arithmetic Stack Control flow Arrays
add ldc c ifeq l aload
div ldc2_w c ifne l astore
mul new C goto l arraylength
neg pop l: newarray T
rem pop2 athrow multianewarray T n
sub dup return
shl dup_x1 xreturn Fields
shr dup_x2 lookupswitch n : l default: l getstatic C.f : T
ushr dup2 tableswitch n to n: l default: l putstatic C.f : T
xor dup2_x1 getfield C.f : T
and dup2_x2 Invocations putfield C.f : T
or swap invokevirtual C.m(T : T)
inc invokestatic C.m(T : T) Miscellaneous
dec Conversions invokestatic C.m(T : T) instanceof C

x2i invokeinterface C.m(T : T) monitorenter
Comparison x2l invokespecial C.m(T : T) monitorexit
lt x2d breakpoint
gt x2f nop
le i2b
ge i2s
eq i2c
ne checkcast C

Figure 2.15 The (reduced) bytecode instruction set.

Interoperability between Java and Bytecode Java and bytecode have many of the
same basic units of code, e.g. classes, methods, and fields. In our mixed lan-
guage, the Java and bytecode representations of these units can be combined
arbitrarily. How to combine the two languages at a finer level of granular-
ity, i.e. inside method bodies, is less obvious. In Java, a method body is a
tree-like structure of statements that may contain leafs of expression trees.
Bytecode methods consist of flat, scopeless lists of instructions. Perhaps the
most elementary form of mixing at this level is to allow bytecode fragments in
place of statements, forming bytecode statements, and vice versa. This – among
other things – allows statement-level separate compilation and basic insertion
of source code into compiled methods. At the statement level, state is main-
tained through local variables and fields. These can be shared between Java
and bytecode statements, as the language uses a common, symbolic represen-
tation for both fields and local variables.

Expressions can be used as the operands of statements or other expressions,
passing a value to the enclosing construct. Bytecode expressions are fragments
of bytecode that can be mixed into expressions. They are conceptually similar
to bytecode statements and share the same syntax for embedding. However,
as expressions, they must produce a resulting value. At the bytecode level,
such values are exchanged using the operand stack. For example, the load con-
stant instruction (ldc) pushes a value onto the stack, and the add instruction
consumes two values and pushes the addition onto the stack. Such instruc-
tions can be used to form a legal bytecode expression:

int i = `[ldc 1; ldc 2; add];

Chapter 2. A Case for Compilation by Normalization 35

void locals() {
{ // Java blocks introduce a new scope

`[ldc 1; store var];
System.out.println(var);

}

// ‘var’ is out of scope and can be redefined
int var = 2;

}

Figure 2.16 Local variable scoping.

Vice versa, the push pseudo-instruction places the value of a Java expression
onto the stack:

push `"Java" + "expression";

2.3.2 Name Management and Hygiene

Local variables shared between Java and bytecode follow the standard Java
scoping rules. Bytecode has no explicit notion of declaration of variables,
only of assignment (using the store instruction). In the mixed language, the
first assignment of a local variable is treated as its declaration, and deter-
mines its scope (see Figure 2.16). In regular bytecode there exists no notion
of local variable scoping; all scopes are lost in the normalization process. To
ensure proper hygiene during normalization, this means that all local variable
identifiers – both intermediate and user-defined – need to be substituted by
a name that is unique in the scope of the entire method. For the example in
Figure 2.16, two unique variables can be identified in separate scopes. After
normalization, these variables get a different name.

2.3.3 Typechecking and Verification

Typechecking is an essential part of the compilation of a statically typed lan-
guage. The Java Language Specification specifies exactly how to perform
name analysis and typechecking of the complete Java language [Gosling et al.,
2005]. The analyses provide type information required for the compilation
(e.g., for overloading resolution) and give feedback to the programmer in case
of errors. We employ a Stratego-based typechecker for Java, which is im-
plemented as a tree traversal that adds semantic information to the abstract
syntax tree.

The typechecker for the mixture of Java source and bytecode is a modular
extension of a typechecker for Java source code. The source code typechecker
is designed to handle language extensions by accepting a function parameter
that is invoked for extensions of the Java source language. The extension can
inspect or modify the environment of the typechecker, recursively apply the
typechecker, or completely take over the traversal of the abstract syntax tree.
For the mixed Java/bytecode language, the extended language constructs are
the mixing constructs of Figure 2.14, where bytecode is embedded in Java.

36

If any of these constructs are encountered, the extension of the typechecker
takes over the traversal by switching to the bytecode verifier. The current
typechecker environment is passed to the verifier, ensuring all variables and
other identifiers are shared with the surrounding code. The verifier in turn
returns the resulting operand stack of the bytecode fragment. For bytecode
expressions, these must consist of a single type, which is passed back to the
Java typechecker. Vice versa, the bytecode verifier invokes the source code
typechecker for any embedded Java constructs, using it to resolve the types of
embedded Java expressions and variables declared in Java statements.

Stack-Consistency of mixing constructs The bytecode verifier ensures correct
stack behavior and type safety of a program. In the mixture of Java and
bytecode, we impose specific rules on the stack behavior to ensure safe inter-
operability and natural composability between Java and bytecode fragments.
These are verified by the bytecode verifier.

One restriction we impose on bytecode expressions is that they must leave
a single value on the stack, just like Java expressions.4 Leaving no value on
the stack is considered an error. Likewise, leaving more than one value on the
stack is considered illegal as this can lead to a stack overflow when it is not
properly cleaned up.

Unlike Java expressions, statements do not leave a value on the stack; they
compile to a sequence of stack-neutral bytecode instructions. That is, they may
use the stack for intermediate values during evaluation, but must restore it
to its original height afterwards. This ensures that all Java statements can
safely be placed in a loop construct, without the risk of a stack overflow or
underflow. Even more so, the JVM actually requires that methods have a fixed
maximum stack height, disallowing loops with a variable stack height [Lind-
holm and Yellin, 1999]. For compound statements (e.g., for, while), stack-
neutrality extends to the contained statements: the input stack of all nested
statements must be the same as the stack outside the containing statement.
This restriction goes hand in hand with the JVM restriction that at any point
in a method, the types of the values on the stack must statically be known,
and must be the same for all incoming edges of the control flow graph. Any
other jumps to a location are considered illegal. The restriction can always
be satisfied on the statement level based on the property of stack-neutrality.
A jump from one statement to another is therefore always legal. To preserve
this property in the mixed language, we place the same restriction of stack-
neutrality on bytecode statements: only bytecode sequences that restore the
stack height are legal bytecode statements. This ensures that fragments of
Java and bytecode can be composed naturally without risk of stack incon-
sistencies, and ensures support for arbitrary control flow between Java and
bytecode statements.

Verifier implementation The JVM specification [Lindholm and Yellin, 1999]
includes a description of how a bytecode verifier should operate. It describes

4Actually, void method invocations are an exception to this, but these cannot be nested into
other expressions.

Chapter 2. A Case for Compilation by Normalization 37

the process as a fix-point iteration, where a method’s instructions are iterated
over a number of times until all possible execution paths have been analyzed.
Because of restrictions on the form of a method and its instructions, this is a
straightforward process. One restriction is that for all instructions the effect on
the stack can be statically determined. For instance, for a method invocation
instruction, this means that it must specify the arguments it takes from the
stack and what the return type is. This also means that the verification can be
done in an intraprocedural setting, using a static, global environment. This
allows it to be tightly integrated into the Java source code typechecker, as it
can be used to verify individual fragments at a time.

We implement our analysis using a monotone framework [Kam and Ull-
man, 1977; Aho et al., 2006]. This representation allows a generic formula-
tion of such analyses using a specific set of operators and constants for each
framework instance. Bytecode verification is a forward data-flow analysis,
and assumes an empty stack at the beginning of a method. The operators
that determine the types on the stack through fix-point iteration are defined
as follows:

• The transfer function determines the resulting stack of an instruction,
given the input stack. For instance, for an ldc instruction, a single value
is loaded onto the stack.

• The join operation merges the stack at branch targets (i.e., labels and ex-
ception handlers), unifying the types of the stack states if they are com-
patible (e.g., String and Integer unify to the Object type).

2.3.4 Source Tracing

During compilation, code often undergoes multiple normalization steps. If
there are any errors in any of these steps, they should reflect the originating
source code, and not the intermediate code. To maintain this information, we
introduce source tracing information that explicitly indicates the source of a
fragment of code, in the form of a path and location of the originating file
and an abstract syntax tree reference. Source tracing is exposed as a language
feature, using the trace keyword (see Figure 2.14). This ensures maximal,
source-level interoperability with other tools that may exist in the compilation
chain. Consider Figure 2.17, which shows a class file compiled using the
traits extension. In addition to language-level support, we provide an API
to transparently include this information in the result of normalization rules
in Stratego. Using this facility, extensions of the compiler can fall back on
the error reporting and checking mechanisms already provided by the base
compiler, and may catch these errors to improve the user experience.

Source tracing information is also used to generate debugging information
in the produced Java class file. This takes the form of a table that maps instruc-
tion offsets to original source file locations, and enables stepping through the
code using a debugger, as well as accurate position information in run-time
exceptions.

38

classfile Shape
methods

trace (void draw() {...} @ TDrawing.java:2:2) [
public draw(void) [...]

]
...
trace (... getVertices() {...} @ Shape.java:9:2) [

public getVertices(void) [...]
]

Figure 2.17 Compiled methods with source tracing.

2.3.5 Data-Flow Analysis on the Core Language

Leveraging the bytecode verifier and the source tracing facility, we imple-
mented analyses such as unreachable code analysis and checking for definite
assignment at the bytecode level. By performing these analyses on the core
language, we can formulate them as a monotone framework instance, or make
use of the information already provided by the verifier. Furthermore, dealing
with a normalized form of the language, these analyses have fewer constructs
to deal with, reducing their complexity.

Reachability of statements can be determined by use of the regular byte-
code verifier: it returns a list of stack states, leaving the stack states of all
unreachable instructions uninitialized. Using source tracing information, the
Java statements that generated such code (which is illegal in Java) can be
reported as unreachable. For testing definite assignment, we formulated an-
other monotone framework instance that maintains a list of all assigned vari-
ables, matching against the load and store instructions. Through iteration it
determines whether or not variables are assigned before use, and if variables
marked final are not assigned more than once. While the core language has
no direct notion of final variables, this information can be retrieved using
the method’s source tracing information.

In addition to verification, we applied these analysis techniques for opti-
mizations on the core language, including dead code elimination and peep-
hole optimizations. Similarly, other optimizations such as constant propaga-
tion can be implemented at this level.

2.4 N O R M A L I Z AT I O N R U L E S F O R C O D E G E N E R AT I O N

Using normalization rules, high-level language constructs can be rewritten
to lower-level equivalents, e.g. from constructs of language extensions to the
Java/bytecode language, and then to the core bytecode language. We express
these rules as Stratego rewrite rules, which take the form

L: p1 →p2 where s

where L is the name of the rule, p1 is the left-hand side pattern to be matched
against, and p2 is the result of the rewrite rule. The where clause s may
specify additional conditions for the application of the rule, or may declare

Chapter 2. A Case for Compilation by Normalization 39

normalize-finally:
|[synchronized (e) { bstm∗ }]| →
|[Object locked = e;

try {
`[push `locked; monitorenter];
bstm∗

} finally {
`[push `locked; monitorexit];

}
]|

Figure 2.18 Normalization of the synchronized statement.

variables to be used in the result. Using the technique of concrete syntax em-
bedding, Stratego rewrite rules may use the concrete syntax of the language
being transformed as patterns [Visser, 2002; Bravenboer et al., 2008]. These
concrete syntax fragments are parsed at compile-time and converted to equiv-
alent match or build operations using the abstract syntax tree. These patterns
are typically enclosed in “semantic braces”:

normalize-if:
|[if (e) s]| →
|[if (e) s else ;]|

this rule normalizes the basic, single-armed if statement to the more general
two-armed if statement, with the empty statement in the else clause. This
normalization ensures that other rules only have to deal with the latter form.

2.4.1 Mixed Language Normalization

Rather than directly normalizing from high-level language constructs to byte-
code, this is often done through a series of small normalization steps. Often,
these are rules that produce a mixture of Java and bytecode, which is further
normalized in later steps. Iterative rule application and leveraging the primi-
tives made available in the mixed Java/bytecode language make it possible to
normalize the complete language using relatively small steps that focus on a
single aspect.

Consider Figure 2.18, which demonstrates a normalization rule for the stan-
dard Java synchronized statement. It is rewritten to a mix of more low-level
Java statements and the monitorenter and monitorexit unbalanced syn-
chronization instructions. The resulting fragments can in turn be normalized
to core language constructs themselves.

We apply normalization rules in both the core compiler as well as in the
language extensions. For example, in Section 2.2.2 we discussed the extension
of Java with traits, mapping trait classes to Java abstract classes for separate
compilation. Consider Figure 2.19, which illustrates this mapping by means
of a normalization rule. This rule makes use of a where clause, and depends
on two helper functions: trait-name, which determines and registers a new
name for the resulting abstract class, and trait-methods, which determines
the set of methods to be included. Given the mapping of traits to regular

40

normalize-trait:
|[trait x trait∗ { method1∗ }]| →
|[abstract class y { method2∗ }]|
where

y := <trait-name> x
method2∗ := <trait-methods> (method1∗, trait∗)

Figure 2.19 Normalization of traits to abstract classes.

Java Reduced instruction set Regular bytecode
intVar++ load intVar iload_1

dup dup
inc iconst_1

iadd
store intVar istore_1

longVar++ load longVar lload_1
dup dup2
inc lconst_1

ladd
store longVar lstore_1

Figure 2.20 Instructions generated for identical Java expressions of type int and
long.

Java classes, the core normalization rules can proceed to normalize the result
further down to bytecode.

2.4.2 Pseudo-Instruction Normalization

The JVM supports over two hundred instructions, ranging from very low-
level operations, such as manipulation of the stack, to high-level operations,
such as support for synchronization and arrays. Many of these instructions
are specialized for specific types, such as the iadd and fadd instructions that
respectively add two integers or two floats. Rather than requiring the code
generator to select the proper specialization of <T>add, we introduce over-
loaded pseudo-instructions to defer this to the final step of the compilation.
This simplifies the implementations of specific language extensions, as they
do not have to reimplement this specialization process.

The pseudo-instructions form a reduced set of only 67 essential instruc-
tions (see Figure 2.15). These are normalized to regular bytecode instructions,
based on the type information provided by the verifier. For this, the verifier
is extended with a transformation operator, which uses the type information
provided by the transfer function of the verifier to replace all overloaded in-
structions with type-specific, standard bytecode instructions.

Consider Figure 2.20, which illustrates how very different bytecode instruc-
tions must be generated for identical Java expressions if they operate on dif-
ferent types. Instructions such as iload and iadd have a type prefix, and the
dup or dup2 instruction depend on the number of words that a value occupies
(i.e., two for long values). In the reduced set, identical instructions can be
used for many such patterns, thus simplifying normalization rules from Java
(or another language) to the instruction set, and reducing their total number.

Chapter 2. A Case for Compilation by Normalization 41

2.5 D I S C U S S I O N

Compilation by normalization in practice From an external view, the Dryad
Compiler has no discernible stages, and simply normalizes the input code
to resulting code that can be normalized again. At each normalization step,
the transformed code forms a valid Java/bytecode program. This design en-
ables extensions – as well as built-in features – to make use of a wider range
of language constructs, and prevents scattering their implementation across
different compilation stages. Furthermore, it allows for different (separate)
compilation scenarios than possible with conventional open compilers.

Still, the internal architecture of the Dryad Compiler does employ separate,
discernible components. For instance, it employs a (global) semantic analy-
sis phase, based on the Dryad typechecker component. As such, it does not
conform to what may be an idealized image of how a normalizing compiler
should work: by pure, iterative application of declaratively defined normal-
ization rules. As it is, the Dryad Compiler uses strategies to maintain a degree
of control over the application order of normalization rules. To simplify their
implementation, the rules are formulated without special logic for preserving
the semantic information collected in the analysis. This means that in some
cases, the analyzer must be reapplied. While this may not be ideal, this ar-
chitecture does not hinder the applications presented here: for the extensions,
the Java/bytecode language acts as the interface of the compiler. The internal
implementation of the compiler, how this language is normalized, and how
this design may (and likely will) change in the future, is of no concern to the
developer of an extension.

Core Language-Based Analysis We perform a number of data-flow analyses
and optimizations on programs after they have been normalized to the core
language. By doing these at this level they can be applied independently of
the source language. The analyses have fewer constructs to deal with than
for source code, reducing their complexity. Still, reducing a program to the
bytecode form can also mean a loss of precision, due to the missing high-
level structure and the reduced size of the code window used by transfer
functions. Logozzo and Fähndrich [2008] offer a discussion comparing the
relative completeness of either approach.

Composition of language extensions Modular definition of language extensions
aids in the composability with other extensions, possibly developed by differ-
ent parties. Ideally, these can be imported into a language without requiring
any implementation level knowledge of the extensions. At the syntax level,
this can be achieved using a modular syntax definition formalism such as
SDF [van den Brand et al., 2002]. On the semantic level, the primary determi-
nant of the compositionality of extensions is the type of analysis and transfor-
mations that are performed (global or local). For global transformations, an
ordering of application must be determined, which requires implementation-
level knowledge. Thus, composable language extensions should use primarily
local transformations; composition of global transformations is an orthogo-

42

nal issue. Using small normalization steps, facilitated by expression blocks,
pseudo-instructions, and the increased expressivity of the general Java/byte-
code language, many extensions can be expressed using local transformations.

2.6 R E L AT E D A N D F U T U R E W O R K

Compiler extension Extensible compilers, such as the JastAdd Extensible
Java compiler [Ekman and Hedin, 2007], ableJ [Van Wyk et al., 2007], Poly-
glot [Nystrom et al., 2003], and OpenJava [Tatsubori et al., 1999] provide
a foundation for compilation of language extensions. Polyglot, ableJ, and
OpenJava follow the front end extension approach; they offer an extensible
semantic analysis stage and aid in projection to the base language. JastAdd
on the other hand provides its own, modular back end. Our approach does
not preclude the use of these tools, but can add to them by offering at the
same time the Java language for projection and direct use of the underlying
bytecode primitives or inclusion of compiled class fragments.

Forwarding, as supported by ableJ, avoids the need to implement full se-
mantic analysis for a language extension [Van Wyk et al., 2002, 2007]. Instead,
forwarding allows the meta-programmer to define the projection of a lan-
guage construct to the base language, and by default applies semantic analy-
sis over the forwarded program fragment. Our work is related to forwarding,
as we similarly define a mapping from a source language to a base language,
using normalization rules. Semantic analysis can be performed on the pro-
jected code, and any errors can be reported in reference to the user code using
source tracing. Unlike in ableJ, we introduce core language constructs into the
source language, to increase its expressivity and to facilitate normalization to
this core language form.

Macro-based systems, such as JSE [Bachrach and Playford, 2001] and the
Jakarta Tool Suite [Smaragdakis and Batory, 2002] implement direct projection
to a base language, forgoing semantic analysis. This can lead to confusing
error messages in references to locations and constructs in the generated code.
We support semantic analysis on the source language using an extensible
typechecker and verifier, and provide source tracing facilities to ensure any
errors on code resulting from transformations can be traced back to user code.

Source tracing is a technique related to origin tracking [van Deursen et al.,
1993], which maintains the origins (i.e., source terms and positional informa-
tion) of terms during rewriting. We extend this notion by defining language
constructs to maintain and share this information explicitly at the source level,
to help interoperability between tools and simplify the internal representa-
tion. In Section 4.4.4 we revisit the topic of maintaining position informa-
tion across transformations, describing an implementation of (implicit) origin
tracking for Stratego.

Language composition A similarity can be drawn between the mixed Java/
bytecode language presented here and existing languages such as C++ and
Ada that allow inline assembly code languages. These too can be used for
optimizations or obfuscation and provide access to low-level operations. As-

Chapter 2. A Case for Compilation by Normalization 43

sembly code, however, is a representation of instructions for a specific CPU
architecture, and therefore is much more low-level and less safe than byte-
code. This makes it more difficult to use it for composition of source and
compiled code.

The Java/bytecode language also shows similarities with the Jeannie lan-
guage [Hirzel and Grimm, 2007], which integrates Java with C code, compil-
ing to code that makes use of the Java Native Interface (JNI) [Liang, 1999], the
JVM’s standard foreign function interface. The C language can be used for ac-
cessing platform functionality or (legacy) libraries, but does not actually form
the core language of the Java platform. Similar to the Dryad Compiler, Jean-
nie performs semantic analysis on the combined language, and introduces a
number of bridging constructs for conversions and interoperability between
the two constituent languages.

Different platforms We have applied the compilation by normalization architec-
ture for the Java platform. Java provides a safe, mature, and ever-evolving
platform for developing applications, and has hosted many new languages
and language extensions [Hardwick and Sipelstein, 1996; Melton and Eisen-
berg, 2000; Seymour and Dongarra, 2001]. A similar architecture can be re-
alized for other platforms based on a bytecode language. For instance, .NET
may be an interesting case given it was designed from the ground up to host
multiple languages, and includes support for unsafe code, which allows di-
rect manipulation of object pointers. Other platforms provide a more high-
level intermediate language, such as the Glasgow Haskell Compiler Core

language [Peyton Jones and Santos, 1998]. Core is not a strict subset of the
Haskell language and cannot be directly compiled [Tolmach, 2001], but this
and similar languages make good candidates for use as a core language that
is grown to a more extensive, (not necessarily existing) high-level language,
by introducing new abstractions, while preserving the core functionality.

Other language extensions We presented a number of compiler extensions,
demonstrating how the Dryad Compiler can facilitate their implementation.
Future work could include other extensions, such as adding full support for
aspect-oriented programming (AOP) [Kiczales et al., 1997], building upon the
implementation of open classes (i.e., intertype declarations in AOP) and com-
position of code at the statement and expression level. Full aspect weaving can
be performed by composition of compiled classes with aspect source code, or
vice versa. A related design is used for the AspectBench Compiler (abc) [Av-
gustinov et al., 2005], which applies aspect weaving on the Jimple language, a
three-address (stackless) representation of bytecode. The abc compiler uses
Soot [Vallée-Rai et al., 1999] to (de)compile Java and bytecode to Jimple.
Thereby they avoid some of the complexities associated with bytecode-level
weaving. Using the Java/bytecode language instead would enable the direct
insertion of regular Java code into class files for both advice and any dynamic
checks or other wrapping code that accompanies it. By providing typecheck-
ing and verification for the combined language, as well as the guarantee of
stack-neutrality of inserted statements, we provide the same level of safety

44

as is possible with weaving using Jimple. Similar techniques can be used in
the implementation of annotation processing tools (such as Java APT [Sun
Microsystems, 2004]), which typically operate purely based on source code.

There is a growing interest in running dynamic programming languages
on the JVM. These compilers, such as Jython [Pedroni and Rappin, 2002]
for the Python language, typically compile to Java source code. Using the
Dryad Compiler as a basis, such compilers can make use of specific bytecode
features and optimizations, such as the newly considered dynamic invoca-
tion instruction.5 Similarly, other Java code generators could be retrofitted to
generate selected bytecode features. The F2J Fortran compiler, for instance,
used to generate Java source code, before it was re-engineered to directly gen-
erate bytecode instead, to support goto instructions and specific optimiza-
tions [Seymour and Dongarra, 2001]. JCilk also generates Java code, to assim-
ilate an extension with fork-join primitives and exception handling for mul-
tithreaded computations [Danaher et al., 2006]. Similar to the problems with
implementing the yield statement as a source-to-source transformation (Sec-
tion 2.2.3), this significantly complicates the control flow semantics. However,
rather than directly generating bytecode for the complete JCilk language, the
current implementation depends on a modified version of the GNU Compiler
for Java as its back end. It would be straightforward to use the Dryad Com-
piler instead, making use of the mixed language and introducing support for
source tracing.

Java’s source model of single inheritance with interfaces does not always
match that of a given language that is intended to target the JVM. For in-
stance, a restriction of Java interfaces is that only one method with a given
signature may exist. This renders interfaces incompatible if they define meth-
ods with the same signature but with a different return type. For generated
code, such as interfaces generated from annotations, this can be a restricting
or incalculable factor. At the bytecode level, this restriction does not exist.
Additionally the synthetic modifier, used for instance on bytecode methods
of inner classes, can be used to mark methods inaccessible from user code
(JVM Spec. [Lindholm and Yellin, 1999], §4.7.6). It can be used to hide mul-
tiple methods with the same signature, and can enable friend class semantics
for generated code.

2.7 C O N C L U S I O N

To increase programmer productivity, language extensions, both domain-spe-
cific and general-purpose, have been and continue to be developed. These
may generate source code or bytecode; either approach has its advantages.
Mixing source code and bytecode, a new language can be formed that has
a synergistic effect, resulting in a language that at once provides the low-
level expressivity of bytecode and the convenience and familiarity of Java.
The combined language allows rapid development of language extensions
through normalization steps that can remain loosely coupled from the base

5JSR 292: http://www.jcp.org/en/jsr/detail?id=292.

Chapter 2. A Case for Compilation by Normalization 45

compiler. Using intermediate forms such as expression blocks and pseudo-
instructions, these steps remain relatively small and maintainable.

Mixing source and bytecode opens the doors for new, more fine-grained
forms of separate compilation, providing a foundation for composition of
source and bytecode classes up to instruction- and expression-level precision.
By use of source tracing, these composed fragments of code can be traced
back to their original source files, enabling accurate location information for
error messages and debugging.

Acknowledgments This research was supported by NWO/JACQUARD pro-
jects 612.063.512, TFA: Transformations for Abstractions, and 638.001.610,
MoDSE: Model-Driven Software Evolution. We thank the anonymous review-
ers of OOPSLA 2008 for providing useful feedback on an earlier version of
this chapter.

46

3
Using Aspects for Language Portability

A B S T R A C T

Software platforms such as the Java Virtual Machine and the CLR .NET vir-
tual machine have their own ecosystem of a core programming language or
instruction set, libraries, and developer community. Programming languages
can target multiple software platforms to increase interoperability or to boost
performance. Introducing a new compiler back end for a language is the first
step towards targeting a new platform, translating the language to the plat-
form’s language or instruction set. Programs written in modern languages
generally make extensive use of APIs, based on the runtime system of the
software platform, introducing additional portability concerns. They may use
APIs that are implemented by platform-specific libraries. Libraries may per-
form platform-specific operations, make direct native calls, or make assump-
tions about performance characteristics of operations or about the file system.
This chapter proposes to use aspect weaving to invasively adapt programs
and libraries to address such portability concerns, and identifies four classes
of aspects for this purpose. We evaluate this approach through a case study
where we retarget the Stratego program transformation language towards the
Java Virtual Machine.

3.1 I N T R O D U C T I O N

Programming languages form layers of abstraction over low-level machine
code. New languages with higher-level abstractions can be created by in-
troducing a new layer, targeting a lower-level programming language and
an API in that language. Such high-level languages no longer target a par-
ticular hardware platform, but rather target a software platform. A software
platform consists of one or more programming languages, application frame-
works, and libraries, and can be used on one or more hardware platforms. By
targeting software platforms in high-level languages, their design and imple-
mentation can benefit from the abstractions available on such a platform [Stahl
et al., 2006]. Examples of software platforms are the Java and .NET platforms,
LAMP1, and C with the POSIX library. Each platform has its own ecosystem
of programming languages, libraries, and developer community.

Language portability across software platforms For programming language de-
signers, targeting multiple software platforms can be appealing for many rea-
sons. Doing so may allow the language to run on different hardware; can
make integration with existing software such as the Eclipse IDE on Java pos-

1Linux, Apache, MySQL, and Perl/PHP/Python.

47

sible; it may improve performance, as seen with JRuby [Nutter, 2008] and
IronPython [Hugunin, 2006] at different points in time. A new platform may
also attract a different developer community. Altogether, targeting a language
to a new platform can be a rewarding endeavor.

Programming languages are typically implemented using a front end/back
end architecture that aids in retargetability: a new back end can be added to
generate code using a language or (bytecode) instruction set supported by the
platform. However, this only addresses portability concerns at the bottom
layer of the technology stack provided by a software platform.

Programming languages can also abstract over the layer of software (li-
braries and frameworks) provided by a platform, in particular to provide
domain-specific abstractions in domain-specific languages (DSLs) [Stahl et al.,
2006; Mernik et al., 2005]. For DSLs it is especially common to use frameworks
in their respective technological domain, such as frameworks for web appli-
cations, data persistence, mobile applications, and so on. Libraries can be
highly platform-dependent: they may perform platform-specific operations,
make direct native calls, or make assumptions about performance character-
istics of operations or about the file system. Some libraries are only available
for selected platforms. For example, if a DSL for administrative web applica-
tions uses the Java-based Hibernate framework in its implementation, some
equivalent is required to implement the language on another platform. These
platform dependencies are exposed to programs either directly through the
runtime system of the language, or indirectly through standard functions or
libraries written in the language. Such dependencies can lead to programs
being tied to a particular platform, regardless of the front end/back end sep-
aration in the compiler architecture.

Another area that requires attention when considering language portabil-
ity is interoperability with existing applications and libraries on the platform.
Care should be taken to address platform idiosyncrasies such as event hand-
ling models and exception handling. For example, in C when some error
condition arises, an application could log a message to the console and quit
with a non-zero exit code. But for other platforms throwing an exception
instead could increase interoperability with other applications. For example,
when embedded in a GUI application, a popup could be shown.

Addressing language portability Portability concerns at the level of programs
and libraries written in a language can be addressed by modifying their
sources, introducing changes to match the new platform or to abstract over the
original platform. To avoid having to fork the sources and having to maintain
multiple copies, conditional compilation can be used. Using conditional com-
pilation, sources can be statically configured by a set of compiler flags that
enable or disable logic for specific platforms. The most straightforward way
of conditional compilation is to use a text-based preprocessor such as the C
preprocessor (cpp). These preprocessors directly manipulate text and ignore
the base language’s syntax rules. This practice makes it much harder for vari-
ous tools – IDEs, code analyzers, etc. – to process the code. Alternatively, true
static conditional language constructs can be added, but they still complicate

48

reasoning about the language and supporting it in tools. Moreover, using
any form of conditional compilation also leads to tangling and scattering of
platform logic throughout the base source code.

Instead of conditional compilation, this chapter proposes to use aspect
weaving [Kiczales et al., 1997] to address library-level portability concerns
of programming languages. Using aspects, portability concerns can be ex-
pressed separately, rather than scattering them across the base source code. By
using load-time aspect weaving, the base source code can be separately pack-
aged and compiled and invasively adapted with platform-specific changes.

To evaluate this approach, we report on our experience in retargeting the
Stratego program transformation language [Bravenboer et al., 2008] to Java.
The language has originally been compiled to C and is associated with the
GNU/Linux operating system; we evaluate how aspects can be used to ad-
dress portability concerns when targeting the Java platform instead. Previous
experience with the Stratego interpreter for Java has shown that targeting the
platform has a number of appealing applications, such as integration with
compiler front ends written in Java to support transformations [Kalleberg
and Visser, 2007a], and integration into the Eclipse IDE with Spoofax. The
present work improves the level of integration with such tools and allows
Stratego programs that originally targeted the C platform – rather than spe-
cialized programs making use of Java-based libraries – to be used on Java and
in Eclipse.

Stratego does not support aspect-oriented programming out of the box.
Few languages do. In general, some form of aspect weaving must be added
to the language for our approach to be effective. For our study, we introduced
aspect weaving facilities to the language. Our results indicate that a mini-
mal, lightweight set of aspect weaving features suffices to address portability
concerns. Using load-time or run-time weaving, these features are straight-
forward to implement and support separate compilation.

Using aspect-oriented programming rather than conditional compilation,
we can adapt the Stratego standard library without having to directly change
the original code; the C and Java implementations remain truly separate. Ex-
isting Stratego programs that were designed for use on the C platform can be
compiled to Java without requiring their sources to be changed. Java-specific
adaptations are generally only needed in Stratego libraries, and can be ex-
pressed entirely using aspects.

This chapter studies the use of aspects to address language portability con-
cerns. To this end, we:

• identify four classes of aspects to address portability concerns: glue code,
migration, integration, and optimization aspects;

• describe a minimal, lightweight form of aspect weaving required to im-
plement these aspects; and

• evaluate our approach through the implementation of a Stratego-to-Java
compiler2, showing instances of all four classes of portability aspects.

2STRJ, the Stratego-Java compiler, an open source project available from http://www.
strategoxt.org/Stratego/STRJ/.

Chapter 3. Using Aspects for Language Portability 49

http://www.strategoxt.org/Stratego/STRJ/
http://www.strategoxt.org/Stratego/STRJ/

Outline We begin this chapter by discussing general objectives, design prin-
ciples, and typical challenges faced in porting a language to multiple software
platforms. We then discuss classes of aspects that can be used to meet these
challenges. In Section 3.3, we describe the Stratego language, the current
compiler design, and introduce our extension of Stratego with aspects. Sec-
tion 3.4 shows portability problems in retargeting Stratego, and how these can
be addressed with aspects. We discuss our results in Section 3.5.

3.2 TA R G E T I N G M U LT I P L E S O F T WA R E P L AT F O R M S

When targeting a different software platform with a language, there are a
number of general goals that guide the design and implementation of such
an effort. First, existing applications should run on the new platform with no
or minimal changes. Second, any libraries written in the language should be
reused. Unlike normal applications, libraries – especially those bundled with
the language – often use low-level, primitive operations. If that is the case, a
number of platform-specific changes must be made that are not exposed in the
API. Third, integration with other applications, frameworks, and languages
on the target software platform is a key part of the retargeting effort.

A well-known design principle for portable language implementations is
the use of a front end/back end architecture [Aho et al., 2006], separating
parsing, analyses and platform-independent transformations from platform-
specific code generation. Another best practice is to define a fixed set of
primitives provided by the platform, used by the language implementation
or its standard library. For example, for Stratego primitives are defined for
traversals over trees, for parsing, for file system access, and so on, each with
a clearly defined interface. By separation of the platform-specific part of the
compiler and maintaining a clear set of primitives, these components can be
replaced when a different platform is targeted.

3.2.1 Language Portability Concerns

In theory, with the design principles outlined above in hand, we can port lan-
guages to a new platform by simply creating a new compiler back end and
runtime system for it. However, in practice, a new back end and runtime sys-
tem do not automatically constitute language portability. Many applications,
libraries, and sometimes the compiler itself, have been written with a particu-
lar platform in mind, making certain assumptions and showing behavior only
appropriate for that particular platform. These library-level portability con-
cerns cannot be addressed by the compiler and runtime alone, and require
changes to the code base written in the language. In this section, we out-
line different sorts of these concerns. We revisit them in Section 3.4, showing
concrete cases for the Stratego language.

Platform-specific libraries High-level languages, particularly those that target
a specific domain, are often implemented by providing a linguistic abstraction
over high-level frameworks or libraries. These libraries are tied to a particular

50

software platform. For example, consider the Hibernate framework for Java.
There are many popular object-relational mapping (ORM) frameworks for
other platforms, but their semantics differ slightly.

When a library is not supported on a particular platform, a similar, alterna-
tive library may be available that can be used instead. Using glue code, it may
be feasible to adapt it to the same basic interface of the reference library. Glue
code is code that does not directly contribute any functionality towards meet-
ing the program’s requirements, but serves solely to “glue together” different
parts of code, helping programs and libraries interoperate.

Platform escapes and native calls Some languages allow escapes to code writ-
ten in the host language (e.g., C). These can introduce portability concerns
as the code escaped to typically does not run on another platform. For other
platforms, an alternative must be implemented. Ideally, code in the retargeted
language – in our case study, Stratego – should be used instead to ensure
portability. If this is not possible, the escaped code should be added to the
set of primitives of the language, allowing different platforms to provide their
own definitions.

Similar to escapes to platform code, native calls to other programs that run
on the platform introduce a number of portability problems, as they add de-
pendencies to external programs that may not be available on other hardware
architectures or operating systems. Some platforms simply may disallow the
use of native calls, or do not bundle required external programs, making de-
ployment more difficult. Rather than making direct native calls, a more por-
table approach is to use libraries where possible. They have an interface that
is less dependent of the operating system, file system, and path configuration
used for the software platform.

Interoperability and integration with platform applications A strong motivation
for targeting a particular platform can be to integrate the programs in the
retargeted language with applications and libraries that run natively on the
target platform (e.g., Eclipse on Java). Key to integration is a good inter-
face for interoperability between the different languages. The public API of a
generated application should be human-readable and easy to use. Advanced
language features should be mapped to corresponding features on the plat-
form. For instance, the Scala language targets the JVM and exposes advanced
language features such as traits as standard Java interfaces for interoperabil-
ity [Odersky et al., 2008]. In addition to the basic API interface, important
notions for interoperability are event models and exception handling. Events
and exceptions are particularly important when embedding programs written
in a language traditionally used for batch processing, such as Stratego.

Performance and stack behavior Software platforms may use different libraries,
a different language, and a different runtime system (e.g., the JVM), leading
to different performance characteristics. On some platforms, performing an
operation one way may be faster, while on other platforms, doing it another
way is faster. For low-level operations, such issues can be addressed in the
compiler back end, which can generate code most appropriate for a given

Chapter 3. Using Aspects for Language Portability 51

platform. High-level operations cannot be easily optimized by the compiler,
as they may need to be changed at the algorithmic level.

Perhaps even more so than general performance trade-offs, a pressing con-
cern in retargeting languages is that of memory limitations. Many platforms
have a set limit to the heap and stack memory sizes that can be used by ap-
plications. Particularly software platforms that target hardware with limited
resources (such as mobile devices) may have severe restrictions. While we
do not address heap size limitations in this chapter – which, at least in prin-
ciple, could be partially addressed in the same way as general performance
concerns – we do pay particular attention to stack size restrictions.

Stack size constraints of the JVM are a notorious problem for running func-
tional languages on the JVM, as they typically do not have explicit looping
constructs but use recursion to perform loops [Schinz and Odersky, 2001].
Our case study of Stratego forms no exception in this regard. The stack con-
sumption of recursive looping is linear to the amount of loops performed,
whereas it remains constant for iterative loop constructs such as the “for”
loop, typically used in Java programs. The maximum stack size cannot be
changed at run-time, only when a new JVM is created, which may not be pos-
sible or desirable in all environments. A common approach to avoid the lin-
early increasing stack consumption of recursion is to rewrite recursive loops
to iterative ones. One automatic approach to do this is by rewriting recursive
tail calls into jumps to the start of a function [Schinz and Odersky, 2001]. A
limitation of this approach is that it only applies to tail calls: many functions
exhibit recursive or indirect recursive behavior that cannot be directly rewrit-
ten to use tail calls. Some common functional programming functions such as
map and filter can only be written in tail recursive style by reversing the out-
put list, incurring additional performance overhead. Baker [1995] proposed
a more general approach, turning all calls into tail calls by converting the
program into continuation-passing style. Unfortunately, for the JVM, Schinz
and Odersky [2001] performed a similar experiment, which showed that a
simple Fibonacci function in continuation-passing style was about 20 times
slower than the standard version. Clearly, there is no silver-bullet solution in
compilers for the stack size problem.

3.2.2 Aspects to Address Language Portability Concerns

We identify four classes of aspects to address portability concerns such as
those listed in the previous subsection:3

• Glue code aspects add glue code to help compatibility with platform-
specific libraries. Glue code written in the retargeted language itself is
often more concise and high-level than wrappers at the platform level.
Glue code aspects may be transitional; as libraries are ported to a plat-
form, some additional glue code may be used to help compatibility.

3Note that there is a relation with the concerns in the previous subsection, but they do not
necessarily map one-to-one to the aspects.

52

• Migration aspects help developers in retargeting their applications to a
different platform. Typical use cases include platform escapes and na-
tive calls, which hinder portability. These aspects may either passively
display warnings or errors for developers that use operations not (fully)
supported on a platform, or they may actively aid the developer, redi-
recting such operations to alternatives that are supported on a platform
but may not be fully compatible with the original operations. For exam-
ple, if a language relies on Java serialization, on another platform it may
implement serialization by use of an alternative API.

• Integration aspects aid in interoperability and integration with other
languages on the platform. For example, they can add exception hand-
ling or throwing to functions written in the retargeted language, or they
can add application-specific hooks for use by other software on the plat-
form. Integration aspects can be application-specific, pertaining to a par-
ticular application; or generic, adapting the runtime system used for any
application.

• Optimization aspects address run-time performance and scalability
concerns. They change definitions in applications or libraries in order
to achieve better performance for a particular platform, or to avoid plat-
form restrictions such as stack size overflows resulting from uses of deep
recursion on the JVM.

After giving an overview of the Stratego language and our extension with
aspects in the following section, we show concrete example use cases of these
aspects in Section 3.4.

3.3 M O D U L A R I T Y A N D A S P E C T S I N S T R AT E G O

In this section we first briefly introduce the Stratego language and its imple-
mentation architecture. Stratego is a bootstrapped language, which means that
it is implemented in itself. For our case study, this gives us the opportu-
nity to explain a bit about the language itself and show how aspect-oriented
programming (AOP) can be used with Stratego. As the current version of
Stratego provides no support for AOP itself, we will also present the design
and implementation of an extension of Stratego with a minimal set of aspect
weaving facilities.

Stratego is a domain-specific language for program transformation, used to
build tools such as compilers, static source code analyzers, and interpreters.
Together with the XT set of tools, Stratego/XT can be used for building com-
prehensive, stand-alone program transformation tools. The most important
of these tools are the ATerm exchange format [van den Brand et al., 2000] and
SDF/SGLR [Visser, 1997c], both of which have been reimplemented in Java.
For a comprehensive description of the Stratego/XT language and toolset, we
refer the reader to [Bravenboer et al., 2008].

At its base, Stratego is a term rewriting language. Using a first-order term
representation of (abstract syntax trees of) programs of a given language, pro-

Chapter 3. Using Aspects for Language Portability 53

grammers can define rewrite rules to transform programs. As a basic example,
the following is the definition of a single rewrite rule that desugars a one-
armed “if” statement with a condition e and a body stm to a two-armed “if”
statement:

desugar-java:
If(e, stm) →If(e, stm, Empty())

Whereas most term rewriting engines use a fixed (innermost) strategy for
rewriting, Stratego allows the definition of custom rewriting strategies. Strate-
gies are a generic description of how a rule or series of rules should be ap-
plied [Visser et al., 1998]. Stratego provides a few basic combinators for com-
posing transformations from rules. For example, the combinator s1 ; s2

produces the sequential composition of the transformation strategies s1 and s2,
and the combinator s1 <+ s2 produces the deterministic choice of s1 and s2.
More complex strategies can be constructed from these basic combinators. For
example, the strategy definitions

try(s) = s <+ id
repeat(s) = try(s; repeat(s))

are part of the Stratego Standard Library. The strategy try(s), tries to apply
transformation s, but succeeds by producing the original term when s fails.
The strategy repeat(s), repeatedly applies a transformation s until it fails.

Just as it is a term rewriting language, Stratego is also a functional lan-
guage. Both rules and strategies are (not necessarily pure) functions at heart:
rules typically rewrite one term to another, while strategies typically corre-
spond to higher-order functions. These are conventions that are not enforced
by Stratego; in fact, many strategies in the Stratego standard library corre-
spond to first-order functions or procedures that interoperate with the soft-
ware platform.

3.3.1 Modularity and Extensible Definitions

Stratego’s module system uses hierarchical modules that correspond to files
relative to the set of import paths. Stratego uses a flat namespace, and al-
lows multiple definitions of rules and strategies with the same name. These
can be defined within a single module or across multiple different modules.
For example, one module may define multiple desugar-java rules related
to control-flow features, while another module may define desugaring rules
for other language features. All definitions for a rule or strategy are merged
together, in a fashion similar to open classes or multimethods: when called,
the first successful matching definition is dispatched. The traditional, whole-
program compilation scheme of Stratego does not support extension of defi-
nitions that have been compiled separately.

Together, a set of modules can form a Stratego library, which can be sepa-
rately compiled and reused in other Stratego components. Each library intro-
duces its own partition to the namespace: while modules can freely extend
strategy or rule definitions within the same library, it is a compile-time error
to add definitions that already exist in another library. There are two reasons

54

for this restriction; the first being that it avoids accidental name clashes, while
the second is more pragmatic: since libraries are separately compiled, the cur-
rent compilation scheme simply does not allow definitions in other libraries
to be extended.

3.3.2 Introducing Aspect-Oriented Programming to Stratego

For introducing portability aspects it is necessary to have aspect weaving
support in the implementation language of the compiler. For many lan-
guages, there are out-of-the-box AOP implementations, such as AspectJ [Kic-
zales et al., 2001] for Java, but not so for Stratego. As a programming lan-
guage, Stratego offers a powerful mechanism for extending existing Stratego
programs, but this mechanism is not sufficient to express the portability as-
pects we described in Section 3.2.2. It cannot be used to adapt definitions
in external Stratego libraries without having to “recompile the world,” and
can only be used to introduce new definitions that are independent of the ex-
isting definitions. For example, a new rule may be added that desugars the
“for” statement, but the rule for the “if” statement cannot be adapted without
directly changing the original rule.

In previous work, Kalleberg and Visser [2006] introduced AspectStratego,
an extension of Stratego with a full-featured aspect language. However, since
it was based on source-level aspect weaving, it cannot be used to weave into
separately compiled libraries. Weaving into separately compiled libraries can
only be supported by weaving into compiled code or through load-time or
run-time weaving. Load-time and run-time may be the options of choice for
the purpose of addressing portability concerns as they require comparatively
little implementation effort.

In this chapter we introduce a new extension of Stratego based on load-
time weaving, supporting basic before/after/around advice. In our extension
we define a new set of modifiers that refine Stratego’s definition extension
mechanism and give control over definitions in separately compiled libraries.
These modifiers are extend, which extends an external definition; override,
which overrides an external definition; and internal, which indicates that a
definition should be closed to extension and must not be exported to other
libraries. We also introduce the proceed keyword, familiar to that of some
more conventional aspect languages, which allows advice to return control
back to the intercepted code.

As an introductory example, we can add – perhaps a cliché – logging mes-
sages to the desugar-java rule from the beginning of this section:

override desugar-java =
log(|Info(), ["Desugaring: ", <id>])4;
proceed

Note that we do not syntactically separate the definition of the join point and
the advice. This particular aspect specifies a join point matching any strategy

4Note that in Stratego, function signatures use a vertical bar (|) to indicate value arguments;
function log is called with two value arguments rather than with two function arguments.

Chapter 3. Using Aspects for Language Portability 55

Figure 3.1 The basic architecture of the Stratego-to-C and Stratego-to-Java com-
pilers, each compiling to core Stratego and then to the target language. The new
Java compiler supports Stratego with aspects (Stratego′).

or rule named desugar-java with zero arguments. When needed, join points
can use wild cards: a pattern desugar-* would match any rule with the prefix
desugar-. The aspect also specifies “before” advice that prints a message with
the current term (i.e., <id>) for every invocation of desugar-java. We do not
distinguish between “before” and “after” advice in the language: instead,
we use the standard Stratego operators such as sequential composition and
conditional choice to combine the definitions.

3.3.3 Implementation of Aspects in Stratego

To implement aspect weaving in Stratego, we must add the new syntactic
constructs to the front end, and adapt the back end to generate code for the
new features (Figure 3.1). We implement aspects by generating standard Java
source code. Since our join point model is relatively simple, this requires only
a modest extension of the compiler. In general, generating code to a language
that directly supports aspects – such as AspectJ [Kiczales et al., 2001] – may
be easier, but in this case we want to avoid introducing a dependency to the
AspectJ compiler.

The Stratego front end merges all rules and strategies with the same sig-
nature, as described in Section 3.3.1. The Java back end then compiles each
definition to a single class that inherits from the Strategy class (Figure 3.2).
This class defines a number of overloads of the invoke() method with differ-
ent parameters, and a dynamicInvoke() method for invoking strategies with
an unanticipated number of parameters. Figure 3.3 shows the class that im-
plements the desugar-java rules. It overrides the invoke() method, which
takes context information about the runtime5 and the current term to which
the rule is applied as its arguments. Overloads of invoke() with more pa-
rameters are not overridden; their default implementation in the superclass
throws an illegal argument exception.

5The runtime context contains all information relevant for the current instance of a compiled
program, including definitions of primitives and the Stratego stack.

56

public abstract class Strategy {
// Invokes a strategy with no parameters
public IStrategoTerm invoke(Context context, IStrategoTerm term) {
throw new IllegalArgumentException();

}

// Invokes a strategy with one parameter
public IStrategoTerm invoke(Context context, IStrategoTerm term,

Strategy s) {
throw new IllegalArgumentException();

}

(...overloads of invoke() with more arguments...)

// Invokes a strategy with a variable number of arguments
public IStrategoTerm invokeDynamic(Context context,

IStrategoTerm term, Strategy[] s, IStrategoTerm[] t) {
Based on the number of arguments, call the corresponding invoke()
method or throw an IllegalArgumentException

}
}

Figure 3.2 The Strategy base class.

public class desugar_java extends Strategy {
public static desugar_java instance =
new desugar_java();

@Override
public IStrategoTerm invoke(Context context, IStrategoTerm term) {

IStrategoConstructor cons0 = term.getConstructor();
if (cons0 == DesugarJava._consIf2) {

Desugar the "if" construct
} else if (...) {

Apply other definitions of the desugar-java rule
} else {

return null; // rule application failed
}

}
}

Figure 3.3 The strategy class for desugar-java.

Each strategy is implemented as a singleton class, and has a mutable in-

stance field. This field is used to invoke the strategy or to pass it as the argu-
ment to a higher-order function, such as the strategy call topdown(desugar-
java) that applies desugar-java to a tree in a top-down fashion.

For strategies that are adapted by aspects, the instance field is assigned to
the instance of the adapted strategy. For example, Figure 3.4 adds the logging
advice from the previous subsection to the class for desugar-java. Note in
particular that the proceed call in this definition is defined by copying the
instance field of the original desugar_java class. When the library that con-
tains the override class is initialized, it simply reassigns the existing instance

field:
desugar_java.instance =

new desugar_java_override();

Multiple libraries may add advice to the same definition in this fashion, fol-
lowing the order in which they were imported. The proceed field always

Chapter 3. Using Aspects for Language Portability 57

class desugar_java_override extends desugar_java {
private final desugar_java proceed =
desugar_java.instance;

@Override
public IStrategoTerm invoke(Context context, IStrategoTerm term) {

term = log.instance.invoke(context, ...);
if (term == null) return null;
return proceed.invoke(context, term);

}
}

Figure 3.4 A class overriding the desugar-java definition.

Figure 3.5 The role of aspects and the interaction between components of Stratego
on Java. Dependencies are indicated by solid lines; weaving is indicated by a
dashed line.

refers to the definition that preceded the new advice, allowing multiple ad-
vice rules to be combined.

3.4 ENCAPSULATING PLATFORM LOGIC WITH ASPECTS

In this section we elaborate on the concrete cases where aspects can be used to
express platform logic, following the same structure as Section 3.2.1. In total,
we created seven libraries with 44 aspect definitions to address portability
concerns in different areas.

Figure 3.5 illustrates the overall architecture and interaction between the
compiler and runtime components. At the left-hand side, the compiler con-
sists of a shared front end and a platform-specific back end. The middle part
of the figure shows the Stratego part of the runtime system; libraries and ap-
plications written in Stratego. Platform-specific portability aspects weave into
these and may make use of the Java part of the runtime system. This last part
consists of a fixed set of primitives that wrap libraries that run on the software
platform.

3.4.1 Platform-Specific Libraries

On the C platform, Stratego uses the ATerm library [van den Brand et al., 2000]
to represent terms, and the scannerless generalized-LR SGLR parser [Visser,

58

1997b] for parsing. While a Java implementation of the ATerm library exists,
we use a more flexible library that allows custom term library implementa-
tions based on a fixed interface, making it possible to operate on arbitrary
(wrapped) Java objects [Kalleberg and Visser, 2007a]. It supports the same
basic operations of the ATerm library, but has different performance charac-
teristics.

To parse files, we use JSGLR, a Java port of the SGLR parser. At the time
of writing, JSGLR supports most functionality of SGLR, and – for the most
part – is successful in strictly following the SGLR semantics. However, JSGLR
currently has a number of differences that affect how it can be used: it op-
erates on strings rather than streams6, it has a built-in mechanism to create
abstract syntax trees rather than parse trees, and it supports position infor-
mation in abstract syntax trees. To support this new interface, we wrote new
strategies to control the JSGLR parser, and added glue code aspects to support
applications that may not have been designed with JSGLR in mind.

Figure 3.6 shows glue aspects related to the JSGLR parser library. The
first two affect the standard API for parsing from streams: here, we first
read the stream to a string using the read-text-from-stream strategy, and
then call the JSGLR parser to parse that string. The next two already operate
on strings, but are overridden with calls to the JSGLR-based API. Note that
the parse-stream-pt and parse-string-pt strategies produce a parse tree,
while the parse-stream and parse-string strategies produce a compacted
abstract syntax tree. The default implementation of the latter two strategies
uses a Stratego transformation to create the compact tree, while the JSGLR
alternatives simply request the parser to create the compact tree. The last
definition in the figure is a migration aspect for the asfix-anno-location

strategy, which adds position information annotations to parse trees. On the
C platform, this is implemented using a C function that transforms the parse
tree to add position annotations. The jsglr-asfix-anno-location is a Java
implementation of this function, but we also report a warning to indicate that
developers should use the more efficient, native position information support
of JSGLR instead.

3.4.2 Platform Escapes and Native Calls

The Good Stratego uses a runtime system with a well-defined set of prim-
itives, as advocated in Section 3.2, to implement primitives in the standard
library that cannot otherwise (or not efficiently) be implemented directly in
Stratego. These primitives can be invoked using the prim language construct.
For example, the standard library utility strategy concat-strings concate-
nates strings, and is implemented as follows:

concat-strings =
prim("SSL_concat_strings", <id>)

6While a stream-based wrapper API is available, strings are used since they work better with
backtracking for error recovery as applied in Chapter 6, the construction of token lists, used in
Spoofax editors (Section 6.8.4), and with GWT, which doesn’t support streams.

Chapter 3. Using Aspects for Language Portability 59

module jsglr-parser-compat

imports
jsglr-parser

rules

override parse-stream-pt(...) =
read-text-from-stream;
jsglr-parse-string-pt(...)

override parse-stream(...):
read-text-from-stream;
jsglr-parse-string(...)

override parse-string-pt(...) =
jsglr-parse-string-pt(...)

override parse-string(...) =
jsglr-parse-string(...)

override asfix-anno-location =
warn-msg(|"Deprecated feature, use origin-location instead");
jsglr-asfix-anno-location

Figure 3.6 Glue code aspects for compatibility with parsing on Java.

That is, the strategy calls a primitive by the name SSL_concat_strings and
passes it the input term <id> of the strategy. In turn, SSL_concat_strings is
implemented by a C function or a Java class in the runtime system.

Stratego has a large collection of well over a hundred of these primitives,
most of which are straightforward to implement in Java. A compiler (back
end) for a given software platform can recognize the prim constructs and
translate them to function calls for that particular platform.

The Bad In addition to the prim construct, Stratego also supports a spe-
cial external modifier to directly call custom, native C functions, not unlike
the native methods used in a language like Java. Some Stratego applications
use these as optimizations or to interface with native libraries. There are also
some cases where escapes to platform code are made from the standard li-
braries and compiler. Because of the ad hoc nature of these functions – any
application can define and use their own native functions – native function
calls cannot be uniformly translated by a compiler.

As an example of an external strategy, some Stratego programs, including
the C back end of the Stratego compiler and WebDSL [Groenewegen et al.,
2010], use a native, C-based pretty-printer. Such a pretty printer can be gener-
ated from a pretty printing table and is typically faster than a pure Stratego-
based implementation that reads the table at runtime. To use such a pretty
printer, the pretty printing program must be linked to the Stratego program,
and the name of the function must be declared in Stratego:

external pp-java(|)

Unfortunately, when Stratego runs on Java, this external C function is not
available. It is not part of the fixed set of primitives, which means that an al-
ternative must be provided at the program-level rather than at the level of the

60

runtime system. Using a runtime check or through conditional compilation at
the call sites, an appropriate alternative could be called. Using aspect weav-
ing instead, such changes can be implemented without changing the original
code – which is undesirable for third-party libraries. All aspects dealing with
native function calls on Java can be collected together rather than scattered
throughout the code. For the case of pp-java, we can simply add advice that
calls the table-based pretty printer instead:

override pp-java =
pp-java5-to-abox; box2text-string(|80)

The Ugly Stratego programs have traditionally been based on XTC, a library
for creating monolithic transformation programs by composition of smaller
tools, such as a parser or a pretty-printer [Bravenboer et al., 2008]. XTC’s
function in the Stratego world has been to reconcile the philosophy of the
Unix platform of “tools that do one thing, and do it well” with the need
for comprehensive transformation tools. XTC maintains its own component
model in a customizable location in the file system, called the XTC repository.
The repository is used to store and retrieve file system paths to shared tools.
Using the xtc-command strategy, any of these tools can be invoked with a
given set of command-line options. XTC also provides a xtc-find strategy
that has been used to find the paths of parse and pretty-printing tables used
for an application, and for locating library headers for use by the Stratego
compiler.

Lately, XTC is being phased out in favor of libraries [Bravenboer et al.,
2008], which are more efficient than forking a new process for specific tasks. In
addition to performance concerns, XTC – and direct invocations of executables
in general – also hinders portability of applications that use it. On the Java
platform, invoking tools in this fashion is often not possible, and using the
file system for resources forms a mismatch with the light-weight deployment
system of using JAR files for applications.

Figure 3.7 shows a number of migration aspects for running Stratego on the
JVM. The first definition extends xtc-command to redirect any calls to the
command-line pp-java tool to more portable strategies. Multiple, indepen-
dent extensions like it can be added for other invoked tools, aiding in the
portability of existing Stratego applications that have not yet made the tran-
sition to libraries. We also override the xtc-find strategy, which normally
returns the absolute path of a file using the XTC repository. This is an exam-
ple of a transitional migration aspect: we only display a warning and do not
call proceed, allowing legacy applications to continue in case the requested
file simply exists in the current directory or if it is an executable on the path.

Native executables can also be directly invoked using the call strategy.
Normally, call is implemented using the fork strategy to fork the current
process, but on Java no such notion exists (although it could be simulated).
Therefore, as additional migration aspects, in Figure 3.7 we also override fork
to print an error, and redefine call using a new Java-specific primitive, print-

Chapter 3. Using Aspects for Language Portability 61

override xtc-command(tool) =
if tool ⇒"pp-java" then
directly pretty-print using pretty-printing library

else
proceed

end

override xtc-find =
warn-msg(|["XTC used to find non-local file ", <id>]);
id // don’t proceed with the original xtc-find

override fork(child) =
fatal-err(|"Not supported on this platform")

override call =
?(program, args);
log(|Info(), ["Calling external tool ", program]);
prim("SSL_EXT_call", program, args) ⇒0

Figure 3.7 Migration aspects related to native calls and XTC usage.

ing an informational message that reminds developers they are calling a na-
tive executable.

The Stratego compiler normally uses library definitions that use XTC to
find header files for imports. On Java, headers should be distributed inside
the compiler’s JAR file instead. They can be automatically embedded using
Stratego’s import-term construct. The import-term construct is also avail-
able on the C platform, but has significantly different performance character-
istics, inflating compilation times and executable sizes as they are serialized
to array literals in C. Using separate aspect definitions ensures that only on
Java import-term is used to retrieve headers.

Figure 3.8 shows the aspects that introduce import-term calls to the pack-

stratego-parse-stratego. The first aspect fetches headers of the standard
libraries. These are all tied to the version of the compiler and cannot be
overridden. The second aspect retrieves the headers for the Java-Front library,
which may be overridden with a different version by the user. The third
aspect in Figure 3.8 ensures that any third-party library headers are not loaded
using XTC, but only from the directories specified with the “-I” command-line
option.

3.4.3 Interoperability and integration with Java applications

So far, we have already shown a number of ways in which direct interoper-
ability between compiled Stratego code and Java can be achieved. Java code
is used for the implementation of the platform primitives, and can be used
to implement custom term libraries. By encapsulating Java code as primi-
tives, Stratego programs can also directly invoke Java code or trigger event
hooks. While applications may add their own application-specific hooks into
Stratego programs, in this section we show a more generic case where we
add Java code to the Stratego standard library to help integration with Java
applications.

62

extend pack-stratego-parse-stratego:
(IncludeFromPath(name), includes) →("", ast)
where

switch !name
case "libstratego-lib": import-term(headerfile)
case "libstratego-xtc": import-term(headerfile)
case ...

end ⇒ ast

extend pack-stratego-parse-stratego:
(IncludeFromPath("libjava-front"), includes) → result
where

if not(proceed ⇒ result) then
result := ("", <import-term(libjava-front.rtree)>)

end

override strc-get-include-dirs =
<get-config> "-I"

Figure 3.8 Migration aspects for XTC usage for Stratego compilation.

Traditional Stratego programs have been batch applications such as compil-
ers. They output a number of informational or error messages to the console,
may write resulting files to disk, and then exit. When integrating such an ap-
plication into interactive Java applications, such as the Eclipse IDE, a different
way of presenting feedback to users is required, particularly for error report-
ing. This can be addressed using an integration aspect to improve this behavior
by adapting the fatal-err strategy, used to report fatal errors (as seen in
Figure 3.7). Normally, this standard library strategy is defined as follows:

fatal-err(|msg) =
log(|Critical(), msg, <id>);
<exit> 1

This standard definition prints an error to the standard error output, and
then exits the application using 1 as the exit code. On the JVM, when the
exit strategy is called, the SSL_exit primitive is invoked, which throws a
StrategoExit exception containing the exit code. Unfortunately, this excep-
tion does not provide the reason why the application exited. This piece of
context information was still available, though, when fatal-err was called.
Thus, if we redefine that strategy to throw a more specific exception, Strate-
goErrorExit – which subclasses StrategoExit – we can make this informa-
tion available to any Java application that invoked the Stratego code. We can
refine the error handling behavior by throwing an informative Java exception
instead, using a primitive called SSL_EXT_fatal_err:

override fatal-err(|msg) =
log(|Critical(), msg, <id>);
prim("SSL_EXT_fatal_err", msg, <id>)

Applications such as the most recent version of Spoofax can use the thrown
exception to present the user with a pop-up in case of errors, referring the
user to the complete error log for more details.

Besides exception handling, there are other examples of uses of aspects for
integration with other applications. For example, hooks into the logging and

Chapter 3. Using Aspects for Language Portability 63

assertion strategies of Stratego to integrate with a graphical user interface or
the Eclipse debugging API. Strategies that read and write text can also use
the Eclipse API to manage encoding, which is maintained in metadata for
Eclipse projects. More application-specific aspects may hook into strategies to
provide feedback as a transformation runs, or to interact with the user.

3.4.4 Performance and Stack Behavior

Since a different software platform – different libraries, language, and the JVM
runtime – is used for Stratego on Java, it has different performance character-
istics than Stratego does on C. Using aspects, performance-critical sections of
code can be replaced with new definitions that better suit the platform.

Using the excellent Java profiler, we were able to identify only a few bot-
tlenecks in normal Stratego programs. Most could be addressed by ordinary,
general compiler optimizations (e.g., caching the result of getConstructor()
in a local variable, as seen in Figure 3.3). One strategy that really stood out
in the profiler results was the read-text-from-stream strategy. It is imple-
mented directly in Stratego by reading a stream character by character, con-
structing a string from the results. Still, the strategy was never a bottleneck
for typical C-based Stratego applications. However, recall that we used this
strategy in Figure 3.6, which means that it is now used for almost all parser
invocations. We can override the strategy with a new definition

override read-text-from-stream =
prim("SSL_EXT_read_text_from_stream")

where we introduce a new Java primitive that efficiently reads the stream
using a block buffer instead of characters.

Optimization aspects can also be applied to adapt performance-sensitive
areas of specific applications. One particular difference between Stratego on
C and Stratego on Java is that they use a fundamentally different internal
representation of terms: on C, maximal sharing is employed; on Java, any
object that implements the Stratego term interfaces can be treated as a term.
The latter allows for custom terms to be used for specific applications, or
for storing additional information in terms. We adapted the runtime system
of the Aster attribute grammar language that runs on Stratego (Chapter 5) to
make use of Java objects to store parent pointers. On the C version of Stratego,
where terms are represented using maximal sharing, annotations were used
for this purpose. The use of parent points makes the Java implementation,
which integrates with Spoofax, significantly faster.

Stack behavior As a functional programming language, Stratego uses recur-
sion to express loops. On the Java platform, the stack is an expensive com-
modity, and using deep recursion quickly uses it up. We found that many
Stratego applications, such as the compiler itself, often resulted in a stack
overflow exception because of this restriction.

Stratego has many strategies that rely on left-to-right traversal of terms,
producing new, immutable left-to-right encoded terms. To rewrite these re-
cursive strategies to use tail recursion would mean that additional, intermedi-

64

override filter(s) =
prim("SSL_EXT_filter", s | <id>)

override map(s) =
is-list;
all(s)

override getfirst(s) =
is-list;
one(where(s; ?x)); !x

Figure 3.9 Optimization aspects for stack-intensive strategies.

ate data would have to be maintained on the heap. The performance overhead
rewriting key strategies such as map and filter in this fashion may not be
acceptable. As an alternative approach, we can redefine these strategies using
imperative Java code. Similar to what can be done with mixed imperative/-
functional programming languages such as Scala [Odersky et al., 2008], selec-
tive use of imperative code in key library definitions allows for better stack
behavior using mutable data structures and iterative looping.

Figure 3.9 illustrates some of the optimization aspects that help avoid stack
overflows. In the figure, we redefine filter using a new primitive, imple-
mented in Java; map using the all operator for lists; and getfirst using
the one operator. Internally, each Strategy is based directly on imperative
Java code: filter uses a primitive implemented using an array and a “for”
loop (not shown here for reasons of space), and the other strategies use the
primitive all/one operators. These all/one operators are standard strate-
gic programming operators (described in [Bravenboer et al., 2008]) that apply
their argument to all or one of the subterms of the current term. Since the
operators are implemented directly in Java, we can use them here to avoid
deep recursion on long lists. Similarly, we redefined or extended eight other
key library strategies that use recursion. As a result, stack overflow condi-
tions for virtually all applications are now avoided, without having to change
the JVM’s default stack size. For those applications that use custom, stack-
intensive strategies, similar measures can be taken.

3.5 D I S C U S S I O N

Aspects for portability concerns Our case study of Stratego for Java has shown
instances of aspects of all four classes of glue code, migration, integration, and
optimization aspects. We were able to neatly separate these concerns from the
base source code, grouping them together by association. Using conditional
compilation instead, they would be scattered throughout the existing Stratego
code base.

Aspects allowed us to implement a new Stratego back end without “pol-
luting” the existing code base with Java-related concerns. Since they can be
woven into compiled code – using load-time aspect weaving – there was no
need to recompile the base Stratego compiler components and libraries with
every Java-related change. This resulted in a shorter development cycle.

Chapter 3. Using Aspects for Language Portability 65

For our case study of porting Stratego to Java, we introduced a modest
extension of the Stratego language to support portability aspects. The im-
plementation of the extension was rather straightforward as we made use of
the standard composition operators that Stratego already provided, combined
with runtime support by means of an instance field that simply indicates the
actual version of a strategy. When applied to other languages, aspect-oriented
facilities of the retargeted language and its host language may be leveraged
to further simplify the approach.

Perspective for future platform support In our case study, we developed a
new Java back end, runtime system, and portability aspects, so that Stratego
now supports both C and Java as a platform. It can still be attractive to
consider supporting other platforms as well. In particular, we are currently
investigating the feasibility of adding Javascript support, in order to make it
possible to use Stratego in a web browser, and to integrate it into client-side
web applications. With its dynamic characteristics and sandbox-like execution
environment, Javascript is comparatively closer to Java than it is to C, which
means that we may be able to reuse some of the Java portability aspects.

Once another platform is added and there is already an established set
of aspects, we expect that there are many opportunities for reuse, in part
directly as some aspects will be the same for multiple platforms, and in part
indirectly for aspects that are woven into the same code but with different
advice. Once support for multiple platforms is established, e.g., C, Java, and
Javascript, it becomes possible to pick and match aspects that correspond to
a new platform. For example a new web-based or mobile platform likely has
commonalities with Java and Javascript, so it could use some of the aspects
defined for those platforms.

Stratego on the JVM The Stratego-to-Java compiler currently passes all stan-
dard Stratego unit tests, and can be used to compile large projects such as
PIL [Hemel and Visser, 2009], WebDSL [Groenewegen et al., 2010], and the
Aster attribute-grammar extension of Stratego (Chapter 5). These applica-
tions run without Java-specific changes except for disabling the native Java
pretty printer of WebDSL (as discussed in Section 3.4.2). Any features that
do not translate well to the Java platform, such as native calls using XTC, are
generally handled by migration aspects, helping developers migrate to newer,
platform-independent APIs.

By supporting the Java platform and deep integration with other Java appli-
cations – in part made possible by the integration aspects – this work has been
an important step in the realization of a fully fledged interactive development
environment for Stratego in the form of the Spoofax language workbench.

Performance In our implementation of aspects for Stratego, every strategy
call is implemented as a virtual method invocation. Most normal Java pro-
grams also use a large number of virtual methods. To reduce the perfor-
mance overhead associated with these calls, the JVM can speculatively inline
them [Detlefs and Agesen, 1999]. (For this reason, we gave the instance

fields of strategy classes the exact type of the class, rather than the more

66

general Strategy type.) Because of this optimization, the overhead of our
implementation strategy is relatively low. Initial measurements show that
typical Stratego applications compiled to Java are no more than two times
slower than when they are compiled to C. For example, consider compilation
of the core Stratego compiler itself to Java, on a 2.4 GHz machine. This takes
about 30 seconds when the compilation runs on the C platform, and about 56
seconds on Java. Performance is probably better when it is not run as a batch
process but as a long-running process, such as an interactive environment,
where the overhead of class loading and JIT compilation is smaller. Future
optimizations, particularly in the term library and the I/O runtime system,
may make this gap smaller. Another possible optimization may be to change
all strategy calls into guarded, non-virtual calls in the code generator. Still,
our initial performance assessments indicate the flexibility provided by as-
pects (and pluggable term libraries [Kalleberg and Visser, 2007a]) does not
lead to a prohibitive amount of overhead.

3.6 R E L AT E D W O R K

While there has been previous work proposing to apply aspects in fields
where traditionally conditional compilation has been applied, none of these
works have applied aspects to address language or compiler portability con-
cerns. Adams et al. [2009] and Reynolds et al. [2008] systematically studied
different patterns of conditional compilation uses in, respectively, the Parrot
virtual machine and the Linux kernel. Both studies concluded that for a large
part of these uses, aspect weaving is a feasible alternative, but that in many
cases preparation of the base source code was required to expose additional
join points. Lohmann et al. [2006] did a quantitative analysis of the perfor-
mance overhead of using aspects for configuration of the eCos kernel, and
found the overhead to be acceptable. Likewise, they concluded that prepara-
tion of the base source code was required. C-CLR [Singh et al., 2007] is a tool
that shows different views of source code, hiding disabled conditional parts.
Through clone detection techniques, it allows mining of aspects.

All the above works have studied configuration of systems software, using
the C language. In contrast, we studied the use of aspects for portability of
high-level programming languages. In our case study, we did not find the need
to prepare the base source code to expose join points or to use potentially
fragile statement-level join points (as suggested by [Lohmann et al., 2006]).
In part, this was due to high-level and concise nature of Stratego definitions
and in part because of the nature of the aspects. As such, only a modest
aspect-oriented extension of Stratego was required, which meant only a small,
acceptable startup cost was required for using aspects for portability.

Another area where aspects have been used for language engineering is in
the construction of compilers [de Moor et al., 1999; Avgustinov et al., 2008],
decomposing different crosscutting concerns in analysis, transformation, and
generation of code. These techniques are complementary to our approach,
as we still rely on a modular front end/back end definition of a compiler

Chapter 3. Using Aspects for Language Portability 67

to target a particular platform. In contrast to these techniques we use aspects
outside the compiler, to address portability concerns that cannot be effectively
addressed inside the compiler.

A notably different approach to language portability is taken by the Scala
compiler. It supports both the Java and .NET platforms, but its primary plat-
form is Java: the standard Scala framework borrows types and methods from
Java, and, at this point, the .NET back end has not been updated to the most
recent version of the language. Instead of using conditional compilation for
the Scala standard library, the .NET back end addresses the Java-based nature
of Scala by redirecting a fixed set of Java-specific method calls to compatible
.NET methods [ScalaNet, 2008]. For example, calls to Object.hashCode()

are redirected to their .NET equivalent, Object.GetHashCode(). As the two
platforms are closely related, this strategy suffices for operations on standard
types such as strings and objects. However, the approach reduces separation
of concerns as the compiler must encode library-specific logic. In contrast,
we use separate libraries of aspects. For platforms with a greater set of dif-
ferences, where simple redirects do not suffice, these libraries can be used to
encode further platform-specific logic. Encoding platform logic in the com-
piler approach is also less flexible as it cannot be used to adapt third-party
libraries or applications.

There have been many proposals of intermediate languages to address
compilation to multiple host languages, starting with languages such as the
Universal Computer Oriented Language UNCOL [Steel, 1961] to more recent
works such as C-- [Jones et al., 1999] and PIL [Hemel and Visser, 2009]. These
languages form an excellent complementary technique to our approach, elim-
inating much of the work required in implementing back ends for multiple
platforms. However, by themselves, they do not address portability concerns
such as uses of native calls, platform-specific libraries, or platform-specific
performance concerns, as discussed in Section 3.2.1.

As a comparatively high-level intermediate language that supports object-
orientation, the PIL language can also be used to implement complete ap-
plication libraries [Hemel and Visser, 2009], thus potentially addressing the
problem of platform-specific libraries. While that approach involves a high
upstart cost – requiring the implementation of application libraries by hand –
it also a high payoff: libraries implemented in this fashion can in principle
be used with any platform that PIL supports. In our present work we take
a different approach, relying on existing application libraries, and using glue
code and migration aspects to ensure portability of existing code.

Aspect languages In previous work, Kalleberg and Visser introduced Aspect-
Stratego [Kalleberg and Visser, 2006], which extends Stratego with support for
aspects, showing how they can be used to address concerns such as format
checking, adaptable algorithms, and traceability. AspectStratego uses source-
level weaving and supports a more extensive join point model than that of
the present work. In particular, it can be used to define pointcuts at match
and build operations, rather than just at the level of strategy definitions and
calls. In contrast, for the present work we used load-time weaving, which was

68

essential to allow weaving into compiled libraries, and ultimately allowed for
a more straightforward implementation. As such, it gave a good indication of
how a minimal, lightweight aspect weaving addition can be used for language
portability,

Aspect languages that integrate with object-oriented programming lan-
guages, such as AspectJ [Kiczales et al., 2001], typically have a more elaborate
join point model than the one we presented here or that of AspectStratego.
They may support pointcuts for specific packages, classes, and parameter
types. In contrast, aspects for domain-specific languages generally have a
more restrictive join point model. In the case of Stratego, which is not object-
oriented, lacks package names, and has definitions that span multiple mod-
ules, such a model arose naturally, and formed a good match with the classes
of aspects shown in this chapter.

Other mechanisms for modularization Dynamic languages such as Java-
Script, Smalltalk, and Ruby allow extensions and modifications of existing
objects and classes with new methods that support the needs of particular
applications or libraries. This practice is informally known as monkey patch-
ing [Bracha, 2008]. In our approach, all changes are performed at load time,
and are statically checked; missing join points are reported by the compiler.
Still, when systematically applied, a fully dynamic approach to address porta-
bility concerns as presented here is certainly feasible.

Language modularity extensions such as MultiJava [Clifton et al., 2006]
and eJava [Warth et al., 2006] add support to Java for extending methods.
Stratego supports a similar concept by supporting multiple definitions of one
rule or strategy in one or more modules. The present work adds support
for extending strategies across library boundaries. A particularly interesting
feature of MultiJava is lexical scoping of method extensions. As we weave
in extensions dynamically at load-time, we do not support lexical scoping.
However, an extension of our work could be to add dynamic checks to scope
extensions, using the current execution context.

3.7 C O N C L U S I O N

This chapter proposes to use aspect-oriented programming to address porta-
bility concerns with regard to languages that target multiple platforms. To
this end, we identified four general classes of aspects to address such con-
cerns: aspects that add glue code to platform-specific libraries, aspects that
help developers migrate to a new API, aspects that help integrate with other
applications on a platform, and those performing platform-specific optimiza-
tions. We showed instances of these classes in retargeting Stratego to the Java
platform. In this case study, we successfully used aspects to neatly encapsu-
late concerns that would otherwise have spanned many different modules, in
the compiler, library, and runtime system. It is our expectation that the same
techniques can be used to help in separation of portability concerns for other
high-level languages.

Chapter 3. Using Aspects for Language Portability 69

Future work with regard to aspects for portability concerns relates to soft-
ware product lines: once more software platforms are targeted by languages,
are there aspects that can be applied to multiple platforms? What are their
dependencies on other aspects?

Acknowledgments This research was supported by NWO/JACQUARD pro-
jects 612.063.512, TFA: Transformations for Abstractions, and 638.001.610,
MoDSE: Model-Driven Software Evolution. We thank Karl Trygve Kalleberg for
his work on Stratego/J that formed the basis for the compiler presented here,
and thank the anonymous reviewers of SCAM 2010 for providing useful feed-
back on an earlier version of this chapter.

70

4
The Spoofax Language Workbench:
Rules for Declarative Specification of
Languages and IDEs

A B S T R A C T

Spoofax is a language workbench for efficient, agile development of textual
domain-specific languages with state-of-the-art IDE support. Spoofax inte-
grates language processing techniques for parser generation, meta-program-
ming, and IDE development into a single environment. It uses concise, declar-
ative specifications for languages and IDE services. In this chapter we de-
scribe the architecture of Spoofax and show how language semantics can be
described using rewrite rules, showing how analyses can be reused for trans-
formations, code generation, and editor services such as error marking, refer-
ence resolving, and content completion. The implementation of these services
is supported by language-parametric editor service classes that can be dynam-
ically loaded by the Eclipse IDE, allowing new languages to be developed and
used side-by-side in the same Eclipse environment.

4.1 I N T R O D U C T I O N

Domain-specific languages (DSLs) provide high expressive power focused on
a particular problem domain [van Deursen et al., 2000; Mernik et al., 2005].
They provide linguistic abstractions over common tasks within a domain, so
that developers can concentrate on application logic rather than the accidental
complexity of low-level implementation details. DSLs have a concise, domain-
specific notation for common tasks in a domain, and allow reasoning at the
level of these constructs. This allows them to be used for automated, domain-
specific analysis, verification, optimization, parallelization, and transforma-
tion (AVOPT) [Mernik et al., 2005].

For developers to be productive with DSLs, good integrated development
environments (IDEs) for these languages are essential. Over the past four
decades, IDEs have slowly risen from novelty tool status to becoming a fun-
damental part of software engineering. In early 2001, IntelliJ IDEA [Saunders
et al., 2006] revolutionized the IDE landscape [Fowler, 2005b] with an IDE for
the Java language that parsed files as they were typed (with error recovery in
case of syntax errors), performed semantic analysis in the background, and
provided code navigation with a live view of the program outline, references
to declarations of identifiers, content completion proposals as programmers
were typing, and the ability to transform the program based on the abstract

71

representation (refactorings). The now prominent Eclipse platform, and soon
after, Visual Studio, quickly adopted these same features. No longer would
programmers be satisfied with code editors that provided basic syntax high-
lighting and a “build” button. For new languages to become a success, state-
of-the-art IDE support is now mandatory. For the production of DSLs this
requirement is a particular problem, since these languages are often devel-
oped with much fewer resources than general purpose languages.

There are five key ingredients for the construction of a new domain-specific
language. (1) A parser for the syntax of the language. (2) Semantic analysis
to validate DSL programs according to some set of constraints. (3) Transfor-
mations manipulate DSL programs and can convert a high-level, technology-
independent DSL specification to a lower-level program. (4) A code generator
that emits executable code. (5) Integration of the language into an IDE.

Traditionally, a lot of effort was required for each of these ingredients.
However, there are now many tools that support the various aspects of DSL
development. Parser generators can automatically create a parser from a
grammar. Modern parser generators can construct efficient parsers that can
be used in an interactive environment, supporting error recovery in case of
syntax-incorrect or incomplete programs. Meta-programming languages [Bra-
venboer et al., 2008; van den Brand et al., 2002; Cordy et al., 1991; Hedin and
Magnusson, 2003; Klint et al., 2009] and frameworks [Nystrom et al., 2003;
WALA, 2006] make it much easier to specify the semantics of a language.
Tools and frameworks for IDE development, such as IMP [Charles et al., 2007,
2009] and the Dynamic Language Toolkit (DLTK) [DLTK, 2007], simplify the
implementation of IDE services. Other tools, such as the Synthesizer Genera-
tor [Reps and Teitelbaum, 1989], Centaur [Borras et al., 1989], and Lrc [Kuiper
and Saraiva, 1998] can even generate a working structured or visual code ed-
itor from a language description.

Language workbenches With a wealth of language construction tools, a need
arose for comprehensive tools that integrated these different solutions and
guided the development of languages. Pleban [1984] suggested the notion
of a “language designer’s workbench” to address this issue: an toolset that
integrates support for all aspects of programming language design and imple-
mentation. This idea was elaborated upon by Lee [1989], and also reflected by
[Heering and Klint, 2000] who proposed the notion of language design assis-
tants that would support the language designers by providing design choices
and performing consistency checks during the design process.

More recently, Fowler [2005a, 2009, 2011] described the trend of integrat-
ing the development and use of DSLs into a single IDE environment, and
introduced the term language workbenches for these tools. In contrast to earlier
work, these workbenches focus on language-oriented programming, domain-
specific languages, and integration of meta-programming and programming
in modern IDEs. In [Fowler, 2009] he described this development as follows:

“Whereas external and internal DSLs have been around for longer than
I’ve been programming, language workbenches are a much newer ani-

72

mal. These tools support DSL creation not just in terms of parsing and
code generation but also in providing a better editing experience for DSL
users.”

Fowler studied a number of practical, modern examples of language work-
benches that allow developers to define and use text-based DSLs, including
the Meta Programming System (MPS) [Voelter and Solomatov, 2010] and In-
tentional Programming [Simonyi, 1995]. In his article he also spoke of vis-
ual editor environments such as DSL Tools [Cook et al., 2007], but as these
have a very different programming model and do not support text-based lan-
guages, we will not discuss them here. Fowler described that language work-
benches greatly increase the cost-effectiveness of developing a new language,
perhaps even to the point that they can be developed for a single applica-
tion as sometimes strived for in language-oriented programming [Ward, 1994;
Fowler, 2005a]. Rather than using a pure text representation, the workbenches
Fowler described store the abstract representation of a DSL program, and use
syntax-directed (or projectional) editing to manipulate this representation di-
rectly. Based on an abstract representation of a program, these workbenches
can analyze a DSL program, perform transformations on it, and may show
different views.

While it is important to maintain an abstract representation of a program to
enable IDE features such as those made popular by IntelliJ, this does not imply
that it should be the principal storage representation of programs, certainly
given the disadvantages of that approach. Fowler noted the need to be able to
store incomplete and contradictory information in the abstract representation,
which is not trivial in this model. Other disadvantages include the lack of free
text editing; incompatibility with standard, text-based version control systems
and issue trackers; and having no way to import artifacts from other (possibly
legacy) tools or to edit programs with other tools (leading to vendor lock-
in). A free text editing approach, based on modern parser generators, seems
much more attractive, since it avoids these problems without precluding the
advantages of a language workbench.

Requirements For a language workbench based on freely editable, textual
languages, we identify the following requirements:

(1) It must provide an integrated environment for both defining languages
and using generated editors.

(2) Conversely, it must be possible to deploy generated editors separately
from the workbench for use by “end developers,” who may not be in-
terested to work in a meta-programming environment.

(3) The environment must provide state-of-the-art IDE facilities. It should
provide a substantial number of modern, language-specific editor ser-
vices such as automatic indentation and bracket insertion, on-the-fly er-
ror markers, reference resolving, and content completion. Many of these
services require an abstract representation of a DSL program; the editor
should schedule parsing and semantic analysis in the background.

Chapter 4. The Spoofax Language Workbench 73

(4) The environment should support efficient, agile language definition,
through incremental and selective development of IDE services, which
requires separation of concerns between language specifications and
pure IDE logic.

Related work The Meta-Environment [Klint, 1993; van den Brand et al., 2001]
was one of the first tools that, while not focusing on DSLs, could be described
as a language workbench (avant la lettre), combining language specification
using ASF+SDF [van den Brand et al., 2002] and generated editors for using
these languages (1). While it supported the construction of editors for “end
developers,” these could never really escape the meta-environment (2). Con-
ceived in the early nineties, it did not yet support modern IDE features (3)
based on real-time parsing and semantic analysis as programs are edited; er-
ror recovery was unavailable for the generated GLR parser at the time. Rather,
it required developers to save a file in syntactically correct state to get a list
of errors in a separate view. Based on the SEAL language [Koorn, 1993], the
Meta-Environment supported separation of concerns in the user interface de-
sign and the language definition (4).

More recent endeavors, which fuse language specification and the con-
struction of modern, interactive IDE components (3), are EMFText [Heidenre-
ich et al., 2009a], MontiCore [Krahn et al., 2008], TEF [Scheidgen, 2010], and
Xtext [Efftinge and Voelter, 2006].

These approaches all follow the same general architecture. They define
their own language for the description of grammars. They may allow anno-
tations in the grammar for the description of syntactic editor services [Krahn
et al., 2008], or, by annotating lexical use-def relations, basic semantic edi-
tor services [Efftinge and Voelter, 2006; Heidenreich et al., 2009a]. From this
grammar they generate a new, separate Eclipse plugin project (2). However,
rather than providing a truly integrated environment, they require a second
Eclipse instance to load this plugin (1). For IDE support beyond the basic
services that can be derived from the grammar, the workbenches allow devel-
opers to write fragments of Java code to customize the generated plugin (4).
The workbenches either use generated Java classes or an Eclipse Modeling
Framework (EMF) metamodel [Budinsky et al., 2004] for the abstract syntax.
Transformations are carried out using Java visitors or external, EMF-based
tooling (4). The tools include string template engines for code generation.

Spoofax In this chapter we present Spoofax, a language workbench that
enables efficient, agile development of software languages with state-of-the-
art IDE support based on concise, declarative specifications.

Spoofax is an integrated environment for the specification of languages and
accompanying IDE support in Eclipse. Generated editors can be dynamically
loaded into the ‘meta’ Eclipse instance enabling smooth switching between
development of the language and development with the language under con-
struction. Spoofax also supports the generation of a stand-alone plugin for
the language under construction that can be deployed to “end developers”
without exposing the meta-programming facilities.

74

Spoofax supports a wide range of editor services based on tightly inte-
grated, real-time application of syntactic and semantic analyses. Analyses are
based on the structured abstract representation provided by a live parse of the
text in the editor, which uses a parser scheduled in a background thread. Error
recovery ensures that editor services function even in the presence of (multi-
ple) syntactic errors, as described in Chapter 6. Origin tracking [van Deursen
et al., 1993] techniques are used to relate the results of analysis back to the
text in the editor without requiring preservation of layout information in the
specification of analyses and transformations. These and other techniques
for the implementation of editor services have been factored into language-
parametric components, allowing language developers to focus purely on the
language-specific parts of a compiler and IDE.

Spoofax supports language definition with declarative domain-specific lan-
guages. The modular, declarative syntax definition formalism SDF [Heer-
ing et al., 1989; Visser, 1997c] is closed under composition, ensuring sup-
port for language extensions and embeddings [Bravenboer and Visser, 2004].
The Stratego transformation language provides a unified formalism for concise
specification of analysis, transformation, and code generation, enabling reuse
of analysis rules for multiple purposes, including dynamic rules [Bravenboer
et al., 2008] for context-sensitive analysis and transformation. We have devel-
oped idioms for language specification based on rewrite rules that can be used
in batch compilation as well as in interactive editor services. Editor descriptor
DSLs provide the bridge between specification of syntax and semantics and
the language-parametric editor service components, providing a pluggable
interface supporting the language engineer in adding new operations to the
editor.

To show that our approach is practical, we describe the specification of a
web language and report on practical experience with the implementation of
other languages and integration with external tools.

The Spoofax language workbench is an open source project, and is available
from http://spoofax.org/.

Previous work The Spoofax project started in 2007 with the development of
Eclipse editors dedicated to Stratego and SDF [Kalleberg and Visser, 2007b].
In order to provide IDE support for languages built with Stratego and SDF,
we developed a prototype of a new Spoofax environment built from scratch,
described in [Kats et al., 2009b], where we showed how DSLs can be used
to define presentational editor services, and how such definitions can be de-
rived from a grammar. We also sketched an interface for error markers and
reference resolving. This chapter shows how a single semantic description
based on rewrite rules can be used for both compilation and interactive editor
services such as error markers, reference resolving, and content completion.
The new Spoofax environment comes with full-featured, “bootstrapped” IDE
support for the meta-languages used for language specification, as well as
meta-programming features such as the ability to apply transformations di-
rectly from the environment.

Chapter 4. The Spoofax Language Workbench 75

http://spoofax.org/

Figure 4.1 Editor services for a web language.

Outline We proceed as follows. We first describe the architecture of Spoofax
and the general anatomy of Spoofax language definitions in Section 4.2. In
Section 4.3 we discuss syntax definition and the specification of syntactic ed-
itor services. In Section 4.4 we discuss the definition of language seman-
tics: analysis, transformations, code generation, and editor services based on
these techniques. We report on experience with language development using
Spoofax in Section 4.6. In Section 4.5 we elaborate on the implementation of
the language workbench. Finally, we discuss related work and directions for
future work in Sections 4.7 and 4.8, and conclude in Section 4.9.

4.2 A N O V E RV I E W O F S P O O FA X

In this section we give an overview of Spoofax from the point of view of three
categories of software developers. “End developers” of a Spoofax IDE work
with the editor services specialized to the their (domain-specific) language.
The developers of Spoofax itself maintain its architecture and language-para-
metric components. Language engineers use Spoofax to develop a language
definition, i.e. the language-specific elements of an IDE.

4.2.1 Editor Services

Modern IDEs provide a wide variety of language-specific editor services,
which are based on tightly integrated, real-time application of syntactic and
semantic analysis. Editor services are separate entities that provide a service
that is directly exposed in the editor or is shared across multiple components.
Figure 4.1 illustrates a selection of editor services.

The editor checks the syntax of the program text, marks syntactic errors
inline, and highlights text elements based on the syntactic structure as the
developer types. The syntactic state of the parser at the cursor is used for ed-
itor services such as syntax completion, automatic bracket insertion, bracket

76

Figure 4.2 Relations between IDE components. Dependency flow is indicated with
arrows; generative dependencies are indicated with a solid line. Components with
an asterisk are generally also part of traditional batch compiler implementations.

highlighting, automatic indentation, and comment insertion. The abstract rep-
resentation provided by the parser enables code folding, the outline view, and
navigation using the quick outline feature.

Based on live semantic analysis of the abstract representation produced
by the parser, the editor displays error and warning markers in the code.
Program navigation and understanding is supported by reference resolving,
occurrence highlighting, and hover help, which use semantic analysis to re-
veal relations between elements of a program. Content completion shows the
developers the valid ways to complete the current construct. Transformation
and code generation, using the results of semantic analysis, can be triggered
each time the editor is saved, or on demand through the “Transform” drop
down menu or using context menus.

In addition to the language-specific editor services provided by a Spoofax
plugin, Eclipse is an extensible environment that offers many language-gener-
ic development facilities such as plugins for version control, build manage-
ment, and issue tracking, and the package explorer view (left of Figure 4.1)
that gives an overview of all projects and is used for resource management.

4.2.2 Component Architecture

Traditionally software languages are developed first as stand-alone compilers
and IDEs are later added, typically requiring a significant reimplementation of
many of the ingredients of the compiler to realize the implementation of editor
services. The components of a compiler – parser, semantic analysis, transfor-
mations, and code generation – also play a central role in editor services based
on the abstract syntax and semantic analysis of a program. Spoofax has been
designed to factor out language independent implementation knowledge into
the generic Spoofax libraries. Furthermore, language-specific definitions are
defined such that they can be reused in several IDE components. Figure 4.2
gives an overview of basic compiler components (marked with an asterisk)
and editor services in an IDE. The dependencies between these components

Chapter 4. The Spoofax Language Workbench 77

can be characterized as generative dependencies – a component can be auto-
matically derived from another – and usage dependencies – a component calls
another.

The grammar and parser are at the root of the dependency graph in Fig-
ure 4.2 (A), since the syntactic structure of programs is the basis for the imple-
mentation of all other services. In particular, the services for presentation in
Figure 4.2 (B) and editing in Figure 4.2 (C) are automatically derived from the
grammar. These services can then be customized, or re-written from scratch,
as desired. Key for the derivation of functionality from a grammar is the use
of a declarative syntax formalism. Semantic actions or escapes to external
functions, which are sometimes used with parser generators, make it hard
to reason about the structure of a grammar for other purposes. In the imple-
mentation of Spoofax we use SDF [Heering et al., 1989; Visser, 1997c]. Another
essential component for an editor is error recovery, which ensures that editor
services based on the structure of the program keep working in the presence
of syntax errors. In Chapter 6 we describe how we can derive error recovery
rules for a grammar to ensure good error recovery even for complex gram-
mars composed of multiple embedded languages or extensions.

The semantic services cannot be derived from the grammar, since they de-
pend on an interpretation of the syntactic structure of programs. Name analysis
is a central component, which is reused in all other semantic editor services.
Name analysis resolves the declaration of names in a program according to
the scope rules of the language.

4.2.3 Structure of a Language Definition

A Spoofax language definition is an Eclipse project that defines the language-
specific elements of an IDE, reusing the language-parametric components
from the Spoofax infrastructure.

Figure 4.3 gives an overview of the default structure of a language defini-
tion project. Each of the three main components – syntax, service descriptors,
and semantics – is defined in a number of modules. Developers are free to
organize these how they wish, but the default layout separates the different
concerns into different files, allowing developers to quickly familiarize them-
selves with the components and interfaces of a language definition.

An important design principle in the combination of derived and handwrit-
ten files has been to clearly indicate in the file name which files are generated.
These files are regenerated every time the project is rebuilt and should not be
edited by the language developer. To ignore specific rules in the generated
file, they can be disabled or redefined in the accompanying handwritten file.
If the generated file is not used at all, it can simply be removed from the list
of imported descriptor files.

The syntax is defined using SDF [Heering et al., 1989; Visser, 1997c]. The
default project comes with a skeletal language with four production rules
(shown in Figure 4.4), and a module Common.sdf with default rules for com-
ments and lexical patterns such as strings and identifiers.

78

Custom Generated
Syntax definition

Lang.sdf Common.sdf
Editor service descriptors

Lang.main.esv
Lang-Builders.esv Lang-Builders.generated.esv
Lang-Colorer.esv Lang-Colorer.generated.esv
Lang-Completions.esv Lang-Completions.generated.esv
Lang-Folding.esv Lang-Folding.generated.esv
Lang-Outliner.esv Lang-Outliner.generated.esv
Lang-References.esv Lang-References.generated.esv
Lang-Syntax.esv Lang-Syntax.generated.esv

Semantic definition
lang.str
check.str
generate.str

Figure 4.3 Language definition components.

Editor services are defined using declarative, rule-based editor descriptor
languages. These can be used to define presentation or editing services, and
can describe the interface of semantic editor services (describing what trans-
formations to use for which service, and which views can be shown for a lan-
guage). Derived services are maintained in separate .generated.esv files,
and provide basic functionality (or, at the very least, examples) for these ser-
vices based on the grammar. Not all services can be derived, but these files
are also a source of documentation and examples.

Semantic definitions are specified using Stratego [Bravenboer et al., 2008],
which provides an integrated solution for analysis, transformation, and code
generation rules. Spoofax separates editor service specifications and the trans-
formations that implement them. Editor service descriptors specify which
transformations to apply, while the Stratego specifications specify what these
should do. This design ensures flexibility in the implementation of services
and allows for possible future integration with other meta-programming lan-
guages and frameworks.

We discuss the three categories of definitions and their relations in more
detail in the following sections.

4.2.4 Agile Language Development

The architecture of the Eclipse platform is based on the OSGi Service Plat-
form [OSGi, 2009], in which each plugin is (usually) a JAR containing Java
classes, a plugin manifest, optional descriptor files, and auxiliary resources,
such as images. The descriptors specify which parts of the Eclipse framework
a given plugin extends, and which parts of the plugin may be extended by
other plugins. The plugin model used by Eclipse implies distributing plugins
as static JARs. The normal workflow cycle for plugin developers is to declare

Chapter 4. The Spoofax Language Workbench 79

Figure 4.4 Multiple editors, side by side, in the same Eclipse IDE instance: the
definition of an entity language (left), an editor for the entity language itself (upper
right), and the abstract syntax of the selected entity (lower right).

new extensions in the plugin.xml descriptor file, implement these in Java,
and test the plugin in a second instance of Eclipse, which is detrimental to a
rapid development process.

One IDE instance Language definitions in Spoofax are based on the Eclipse
plugin project model: each language definition includes a plugin manifest
and descriptor files that allow it to be distributed to “end developers” as a
normal Eclipse plugin. However, to enable agile language development we
use a very different workflow model than that of standard Eclipse plugin de-
velopment. By using language-parametric editor services that dynamically
load and update language-specific service specifications (described in more
detail in Section 4.5.1), we can use generated editors for a language in the
same environment (Eclipse instance) in which we edit the language definition
itself. Figure 4.4 illustrates how a grammar (left) and a generated editor (up-
per right) can be used side by side. The editor is fully functional and includes
semantic services also defined in the same environment. The lower right edi-
tor illustrates an abstract syntax view for the selection in the generated editor
that is updated in real-time as the selection is edited.1 The same view can be
used to inspect (intermediate) results of transformations.

Inductive design Rather than designing a complete DSL “on paper,” before
its implementation, it is good practice to incrementally introduce new features
and abstractions through a process of evolutionary, inductive design [Visser,
2007; Fowler, 2005a]. In the context of a language workbench, this means
that DSL programs and the DSL itself evolve together. This enables quick
turn-around time for the development of the DSL and the subsequent grad-
ual extension as new applications are developed, and new insights into the
domain are acquired.

1While a graphical abstract syntax view can be visually appealing, we opt for an automati-
cally formatted textual view instead, as it is much more concise, conveys the same information,
and benefits from standard, textual editor services. Moreover, the same textual representation is
also used in (and can be copy-pasted to) specifications of analyses and transformations.

80

The Spoofax environment assists in the initial creation of a new language
using a wizard that simply takes the name of the language, the file extension it
uses, and a package name. The wizard then creates a new Eclipse project with
a skeletal language definition. From this point, new language features can be
added through an iterative development process. New language constructs
can be added to the grammar. These features can be directly used in the
editor for the language.

A new language project created by the wizard includes standard Eclipse
plugin configuration files (these are typically not changed by language de-
velopers), as well as specification files native to the Spoofax environment.
Developers can then define editor services and define semantics for these fea-
tures. Some editor services are automatically derived from the grammar; their
specification can be adapted as desired.

An important aspect of the Spoofax architecture is that it allows for selec-
tive development of editor services. Developers can freely select what services
to implement: the editor can also be used with a subset of all features. For
example, developers may forgo sophisticated semantic analyses and trans-
formations, and simply define code generation by a very direct mapping of
abstract syntax to target code using string templates. Reuse is key for efficient
language development, which means there are some dependencies between
services (as seen in Figure 4.2), but most can be completed individually, al-
lowing the language and IDE to be evaluated and used at every stage of
development. In Chapter 8 we discuss how tests can be used to drive an
incremental DSL development process.

Language understanding with views The specifications of most editor services,
in particular those for semantic services based on analyses and transforma-
tions, are defined in terms of a textual abstract representation of programs.
Using the abstract syntax view (Figure 4.4), developers can inspect the abstract
syntax of a text selection or file.

The abstract syntax view of Figure 4.4 is not a built-in Spoofax feature, but
it is a view that is defined with the default, skeletal language definition. Views
show the results of transformations (as indicated by the relation in Figure 4.2).
When a view is opened, it is automatically placed to the side of its source
file, allowing developers to view both at a glance. Views are implemented
using standard, textual editors (either for DSLs or languages such as Java that
live in the Eclipse environment). They show either the abstract syntax of a
transformation or the concrete syntax (e.g., standard Java code). The default
view for showing the abstract syntax is defined by showing the result of the
“identity” transformation, i.e., code is only parsed, not transformed.

Views are an important aspect of our architecture and a requirement for
agile language development: they are essential for awareness of the abstract
representation of a language, and can be used to show (intermediate) results
of analyses and transformations independent of other editor services.

Chapter 4. The Spoofax Language Workbench 81

4.2.5 Example Domain-Specific Language

In the following sections we use the NWL language2, a subset of WebDSL
[Groenewegen et al., 2010], to illustrate key points of language definition.
NWL covers several aspects of web programming i.e. entity declarations (data
modeling), properties with inverse relations, parameters and variables, ex-
pressions, template definitions, page navigation, and several types of template
elements. However, in this chapter we focus only on definitions of entities and
actions (which are analogous to data type definitions and functions in other
languages).

4.3 S Y N TA X

The central implementation artifact for any textual language is the parser,
which can be generated from a grammar.

In Spoofax, the grammar has the following roles:

1. it specifies the concrete syntax (keywords etc.)

2. it specifies the abstract syntax (the data structure used for analysis and
transformation of programs written in the language)

3. it is used to derive editor services for presentation and editing that can
be customized by the developer

We use SDF [Heering et al., 1989; Visser, 1997c] to define grammars. SDF
grammars are declarative, highly modular, combine lexical and context-free
syntax into one formalism, and can define concrete and abstract syntax to-
gether in production rules.

SDF productions take the form p1...pn → s and specify that a sequence
of strings matching symbols p1 to pn matches the symbol s. Productions
can be annotated with a constructor name n to uniquely identify them in the
abstract syntax using the {cons(n)} annotation. Other annotations include
{left} and {right} to specify the associativity of operators. Spoofax also
supports {deprecated(e)} to mark obsolete language constructs. When a
file is parsed that uses these constructs, they are marked with a warning in
the editor. Optionally the editor can report an explanation e to instruct the
user to use alternative syntax.

Figure 4.5 shows an abbreviated SDF grammar for the NWL language.
The grammar extends the basic entity language of Figure 4.4 with additional
features. NWL modules consist of a module name and a list of Def defini-
tions. Definitions can be entity declarations, import declarations, or actions.
Actions have a comma-separated list of Param parameters and a list of Stat
statements.

2The complete definition of NWL is available at http://strategoxt.org/Spoofax/
NWL/.

82

http://strategoxt.org/Spoofax/NWL/
http://strategoxt.org/Spoofax/NWL/

module NWL
imports Common
exports

context-free start-symbols
Start

context-free syntax
"module" ID Def* → Start {cons("Module")}
"import" ID → Def {cons("Import")}
"entity" ID "{" Prop* "}" → Def {cons("Entity")}
"action" ID "(" {Param ","}* ")" "{" Stat* "}"

→ Def {cons("Action")}

ID ":" Type → Param {cons("Param")}
ID ":" Type → Prop {cons("Property}
ID → Type {cons("SimpleType")}
"Set" "<" Type ">" → Type {cons("SetType")}

Exp ":=" Exp ";" → Stat {cons("Assign")}
"for" "(" ID ":" Type ")" "{" Stat* "}"

→ Stat {cons("ForAllEntity")}
"for" "(" ID ":" Type "in" Exp ")" "{" Stat* "}"

→ Stat {cons("ForAll")}

"all" "(" Type ")" → Exp {cons("ForAllExp")}
STRING → Exp {cons("StringLit")}
ID → Exp {cons("Var")}
Exp "." ID → Exp {cons("PropAccess")}

Figure 4.5 An abbreviated grammar for entities and actions in NWL. The full NWL
grammar also includes annotations for entity properties and additional statements.

Mapping between abstract and concrete syntax The abstract syntax, used in the
specification of editor services, can be represented as first-order terms of the
form

t ::= "..." // string literals
| c(t1,...,tn) // constructor applications
| [t1,...,tn] // lists of terms

As an example, consider the first production of the NWL grammar:
"module" ID Def* → Start {cons("Module")}

This production has three elements: the literal “module”, an identifier name,
and a list of definitions. For analyses and transformations we’re usually not
interested in literals and layout, so only the name and list of definitions are
included in the abstract representation:

Module("example", [Entity("User", [...])])

which corresponds to the abstract syntax of the module at the upper right of
Figure 4.4.

Spoofax generates a parser from the grammar, which produces the abstract
representation of a file every time the user presses a key and a short de-
lay passes. After the parser completes, all editor services that depend on the
abstract representation are updated automatically. Internally, the abstract rep-
resentation is stored efficiently in memory as Java objects, and maintains full
layout and position information for use in services that need it.

Chapter 4. The Spoofax Language Workbench 83

4.3.1 Syntactic Editor Services

Editor services related to presentation and editing can be based directly on
the syntax definition (as indicated by the relation in Figure 4.2). These ser-
vices can be fully specified using declarative editor service descriptor speci-
fications. Rather than give an exhaustive overview of these descriptors and
their features (available online at http://spoofax.org), we show some ex-
amples in this section to give an impression of how a declarative descriptor
DSL can concisely describe these services.

Syntax highlighting Default syntax highlighting behavior is derived based
on the literals and lexical syntax in the grammar. The colors used for this de-
rived behavior are specified in the generated colorer descriptor, shown in the
lower half of Figure 4.6. It specifies a color for keywords (alphanumeric lit-
erals in the grammar), operators (non-alphanumeric literals), strings (lexicals
that allow spaces), numbers (lexical numeric patterns), and identifiers (other
lexicals). The default colorization works well, but can be customized in the
NWL-Colorer.esv file. The top half of Figure 4.6 illustrates custom coloring
rules for the Type symbol, with specific colors for the SimpleType and the
SetType constructor. Other coloring rules can override the colors for literals
and lexicals, and can specify background colors, colors for regions of code
rather than single productions, and more.

Code folding and outline view Code folding and the outline view are specified
by selecting grammar productions that should be made foldable or shown
in the outline view. Figure 4.7 illustrates some folding rules for the NWL
language. Spoofax uses heuristics to automatically derive a generated folding
descriptor, based on the logical nesting structure of the language. Currently,
productions rules that have an identifier lexical and a list of child elements
are included in this descriptor. While not perfect, the heuristic provides a
good starting point for a new folding definition. Any undesired definitions
in the generated file can be disabled by using the (disabled) annotation in
the custom specification. The (folded) annotation can be used for constructs
that should be folded automatically.

Bracket highlighting and insertion By describing pairs of matching brackets
and the comment constructs of a language, the bracket highlighting, bracket
insertion, and comment insertion features can be enabled for an editor (Fig-
ure 4.8). Bracket pairs are also used to supplement the automatic indentation
specification (not shown): the cursor is automatically indented one level if a
newline is entered after an opening bracket.

Syntax completion We distinguish syntactic and semantic content comple-
tion (the latter is discussed in the next section). Syntactic content completion
provides users with completion suggestions based purely on static, syntactic
templates. For example

completion template:
"entity " <e> " {\n\t\n}"

84

http://spoofax.org

module NWL-Colorer
imports NWL-Colorer.generated
colorer

Type.SimpleType : cyan
Type.SetType : gray

module NWL-Colorer.generated
colorer

keyword : magenta bold
identifier : default
string : blue
...

Figure 4.6 Syntax highlighting rules for NWL.

module NWL-Folding
imports NWL-Folding.generated
folding

Start.Module
Definition.Entity
Definition.Action

Figure 4.7 Folding rules for NWL.

module NWL-Syntax
language

line comment : "//"
block comment : "/*" * "*/"
fences : () { }

Figure 4.8 Comment and bracket definition rules for NWL.

is a syntactic completion rule for entity definitions. Completion rules are
composed of static strings and placeholder expressions. Static strings allow
for precise control of the presentation of completions and are enclosed by
double quotes. They can use \n for newlines or \t for one indentation level
(following the user’s tab/space configuration). Placeholder expressions are
indicated by angular brackets. The editor automatically moves the cursor to
these expressions once the user selects a completion proposal, allowing the
expressions to be filled in as the user continues typing.

4.4 A N A LY S I S A N D T R A N S F O R M AT I O N

Semantic analysis has two key roles in the implementation of programming
languages. First, the analysis checks if programs program are (type) consis-
tent, reporting errors if they are not. Second, it provides semantic information
for use by compilers, IDEs, and other language-specific tools.

In IDEs, semantic analysis forms the basis for all semantic editor services.
There are two forms of semantic analysis that are particularly important for
IDEs: name analysis and type analysis. Name analysis binds each identifier
occurrence to its declaration. Name analysis is exposed directly in the IDE in
the form of reference resolving: press and hold Control and hover the mouse
cursor over an identifier to reveal a blue hyperlink that leads to its declaration.

Chapter 4. The Spoofax Language Workbench 85

Figure 4.9 Staged compilation: source code is parsed, transformed, and finally
printed to target code.

Type analysis determines the type of expressions and is important for report-
ing errors and for context-dependent code generation. Other analyses such as
data-flow analysis and pointer analysis may also have a role in marking errors
and warnings or for optimization of the generated code, but in this chapter
we focus on name and type analysis because of their central and crucial role
in both compilation of languages and for editor services.

Like many traditional compilers, we employ a staged architecture of analy-
ses and transformations, as illustrated in Figure 4.9. First programs are parsed,
then syntactic sugar is eliminated, and then they are analyzed, creating ab-
stract syntax trees decorated with semantic information. Semantic editor ser-
vices such as reference resolving and error marking operate on these deco-
rated trees. After the analysis, the tree can be further normalized to a core
form, and finally code generation rules can generate resulting code.

In the remainder of this section, we first introduce the Stratego transfor-
mation language, and then show idioms for using Stratego rewrite rules to
concisely and declaratively specify analyses and transformations for use by
editor services and for code generation.

4.4.1 Stratego

Spoofax uses the Stratego program transformation language [Bravenboer et al.,
2008] to describe the semantics of a language. The Stratego language is based
on the paradigm of term rewriting with programmable rewriting strategies
introduced by Visser et al. [1998]. Basic transformations are defined by means
of conditional term rewrite rules of the form

r : t1 → t2 where s

with r the name of the rule, t1 and t2 first-order terms, and s a strategy ex-
pression. A rule applies to a term when its left-hand side t1 matches the term,
and the condition s succeeds, resulting in the instantiation of the right-hand
side pattern t2. Otherwise the application fails. Unconditional rules have no
where clause, others may have multiple clauses that must all be satisfied.

In addition to checking applicability constraints, the where clause of a rule
can perform computations that may be used in the right-hand side of the rule.
For example, in the rule schema

r : t1 → t2 where t3 := <s> t4

86

the term t4 is transformed by application of a strategy or rule s, matching
against and binding variables in the pattern t3. Term t4 may use variables
from the left-hand side t1, and right-hand side t2 may use t3.

Rewrite rules can concisely express small transformations based on the
abstract representation of a program. Using content completion of terms,
based on the syntax of a language, and by providing views of the abstract
syntax and the results of transformations, the Spoofax environment assists in
writing these rules.

More complex transformations can be created by composing rules using
strategies. Many strategies can be compared to visitors in object-oriented pro-
gramming in that they guide the application of rules in a tree. A strategy is
essentially a partial function from terms to terms. If a strategy is not defined
on a term it is said to fail. Failure arises from the failure of rewrite rules
to apply to terms. Strategies are composed from basic combinators such as
the identity transformation id, sequential composition s1; s2 and determin-
istic choice s1 <+ s2. The Stratego standard library provides a number of
strategies for general use, such as map(s) that applies a strategy expression
s to each element of a list, and alltd(s) that descends down the branches
of a term up to the points where s can be successfully applied, returning the
complete term after transformation.

Context-sensitive transformations can be expressed by means of dynamic
rewrite rules [Bravenboer et al., 2006b], which are instantiated at run-time, as
illustrated by the following schema:

r : t1 → t2
where rules(dr : t3 → t4)

The dynamic rule dr is defined when r is applied to a term matching t1. Any
variables that t3 and t4 share with t1 are then inherited by the instantiation
of dr (concrete examples follow below).

4.4.2 Desugaring

Desugaring rules simplify the abstract representation of programs, transform-
ing higher-level constructs to more general, lower-level constructs, or map-
ping constructs with multiple forms to a single, canonical form. They can
also be used to migrate deprecated language constructs to newer alternatives.
This way, later analysis and transformation stages only need to focus on a
subset of all language constructs.

The full WebDSL language supports various different iteration expressions
and statements with optional filters and ordering clauses [Groenewegen et al.,
2010]. In our NWL subset we provide three basic iteration constructs without
filtering or ordering, shown in the grammar of Figure 4.5. The ForAllExp

expression and the ForAllEntity statement iterate over all instances of a
given entity type. The ForAll statement is more general and iterates over
a given expression. To avoid having to write typing, transformation, and
code generation rules for each of these variations, we use desugaring rules to
transform similar constructs to the most general form.

Chapter 4. The Spoofax Language Workbench 87

desugar-top = innermost(desugar)

desugar:
ForAllEntity(x, t, s*) →
ForAll(x, t, ForAllExp(t), s*)

desugar:
Call(x) → CallArgs(x, [])

Figure 4.10 Simple desugaring rules.

Figure 4.10 shows a desugar rule that transforms the ForAllEntity state-
ment to the more general form. Another definition of the rule transforms
action calls without arguments to action calls with an empty list of arguments
(omitted in the syntax definition). More sophisticated, context-sensitive trans-
formations, such as type inference for the ForAll loop, can be applied after
semantic analysis of the program. The desugar rules are exhaustively applied
in an innermost fashion by the desugar-top strategy.

4.4.3 Reporting Errors and Warnings

There are a number of concerns in checking a program for errors and report-
ing them to the user:

• Context: identifying points in the code to check

• Assumptions: only report an error if certain assumptions hold (validating
the context and avoiding spurious errors)

• Constraints: checking for constraints at the context

• Formulating an error message

• Attribution of the error to a particular character range in the source text
(usually, only part of the context is marked, such as the name of an
erroneous method)

In Spoofax, error checking is a transformational process: it transforms an
abstract syntax tree to a list of errors (also a tree, containing messages and at-
tributed tree nodes). We use regular Stratego rewrite rules to transform parts
of the tree to errors. These check rules encapsulate all of the above concerns,
and adhere to the following idiom:

check:
context → (target, $[error message])
where assumption
where require(constraint)

The rule checks whether for the given context (the term under scrutiny) the
constraint is satisfied, given that the assumption holds. The require(s)

operator is sugar defined as follows:
require(s) = not(s)

88

check-top = collect-all(check)

check: Var(x) → (x, $[Variable [x] is not declared])
where require(type-of)

check: SimpleType(x) → (x, $[Undefined type [x]])
where require(is-simple-type)

check: PropAccess(e2, p) → (p, $[[t] has no property [p]])
where t := <type-of> e2
where require(type-of)

check: ForAllExp(t) →
(t, $[For loop requires entity type argument])

where <is-simple-type> t
where require(<is-entity-type> t)

check: SetType(t) →
(t, $[Set requires entity type argument])

where <is-simple-type> t
where require(<is-entity-type> t)

Figure 4.11 Consistency checking rules.

That is, the check rule succeeds (producing the specified error message), if
the assumption succeeds but the constraint fails.

The right-hand side is a pair consisting of target term and an error message.
The target is (typically) a subterm of the context and denotes the term to
which the error message should be attributed. The error message should
explain that the constraint does not hold. The error message is a string
typically composed using string interpolation, i.e. $[...] is a string consisting
of all literal characters between the quotes, except for escapes between [...].
For example, if t is bound to "Blog" and p to "size" then $[[t] has no

property [p]] evaluates to the string "Blog has no property size".
Figure 4.11 gives a selection of check rules for the NWL language. The

check-top strategy controls the application of these rules: it collects a list
of all tuples resulting from successful applications of the check rules. For
the specification of assumptions and constraints, these rules use a number
of helper rules that are defined by the name and type analysis (which we
describe in the next subsection). The type-of helper is a rule that returns the
type of an expression. If the type cannot be resolved (indicating an error in
the program), type-of fails. For example, the first check rule of Figure 4.11

requires that type-of succeeds for the context. If it does not, an error is
reported. Another helper is is-simple-type, used in the second check rule:
it only succeeds if the given type is a declared entity type (as opposed to a set
type). This helper is also used to distinguish the case where constructors are
undefined or just non-entity types.

4.4.4 Binding Transformations to Editor Services

Transformation with origin information For the check rules it is important to
maintain the relation between the original source location and the term an
error is attributed to. Figure 4.12 illustrates the different steps of the error

Chapter 4. The Spoofax Language Workbench 89

Figure 4.12 Transformational error checking with origin information.

checking strategy. First, the source code is parsed, desugared, and analyzed,
producing the abstract syntax tree to the left. Then the check-top strategy
is applied, producing the tree to the right, with pairs for all attributed terms
and error messages. Throughout the desugaring, analysis, and error checking
process, the relations between the original source positions and the terms are
maintained, as shown by the dashed lines. Using these relations, all errors
can be reported in the source code locations that correspond to the attributed
terms.

The origin relations are maintained automatically by the Spoofax environ-
ment, allowing language developers to write concise, position information-
agnostic transformations rather than keeping track of the original position
manually. Position information is implicitly passed along with transforma-
tions through a form of origin tracking [van Deursen et al., 1993]. Origin track-
ing is a general technique that can be applied in term rewriting systems to
implicitly maintain a link to the originating term after it has been rewritten to
a new term.

Origin tracking as introduced in [van Deursen et al., 1993] has originally
been used to trace back errors to their original source, much like we do in
our error checking transformation. However, as we show in the remainder of
this section, the technique can also be used to for high-level specifications of
analyses and transformations used by editor services.

Control rules The transformation of an abstract syntax tree to a list of errors
is controlled by the analysis control rule. Control rules are regular Stratego
rewrite rules with a fixed signature that form the interface between the IDE
and the Stratego transformation specification.

The control rule for semantic analysis and error reporting is shown in Fig-
ure 4.13. The rule is given information about the file that is being analyzed,
in the form of a tuple with the abstract syntax tree of the file to be checked,
its project-relative path, and the file system path of the project itself. The rule
transforms this input to a new abstract syntax tree, decorated with seman-
tic information, and lists of errors, warnings, and informational notes to be

90

editor-analyze: (ast, path, project-path) →
(ast’’, errors, warnings, notes)

where editor-init;
ast’ := <desugar-top> ast;
ast’’ := <declare-top> ast’;
errors := <check-top> ast’’;
warnings := <check-warning-top> ast’’;
notes := <check-note-top> ast’’

Figure 4.13 Control rule for semantic analysis.

marked in the program. In the where clause, the rule first resets the current
analysis environment using the built-in editor-init strategy. Correspond-
ing to Figure 4.9, the rule then desugars the input abstract syntax tree and
analyzes it, by calling the declare-top strategy (given below). It then col-
lects all markers for the resulting (decorated) abstract syntax tree using the
check strategies.

Semantic editor descriptors Editor descriptor files determine which control
rule is used for which service. For example, the NWL-Builders.esv file spec-
ifies:

observer: editor-analyze

which means that editor-analyze is used as the observer control rule for
the semantic analysis and error reporting. Control rules can also be specified
for when files are saved (on save), for when a view is opened (builder), for
reference resolving (reference), and for each of the other semantic services
of Figure 4.2.

4.4.5 Name and Type Analysis

Name analysis binds each identifier occurrence to its declaration. Based on
name analysis, type analysis identifies the types of expressions. Name analy-
sis is also used for semantic editor services and code generation, as illustrated
in Figure 4.2. Together, name and type analysis form the basis for consistency
checking rules as those seen in Section 4.4.3.

As name analysis and type analysis are generally used together, it is com-
mon practice for compilers to combine the two analyses. Rather than locating
the definition site for identifier occurrence, the name analysis then directly
collects a mapping of names to types, and the type analysis determines the
types of nested expressions.

In Spoofax we use the name analysis independently from the type analy-
sis in semantic editor services. For this reason it is important to separate it
from the type analysis. In this section we present an idiom for separate spec-
ification of name and type analysis using rewrite rules and dynamic rules.
For simplicity, we divide the name analysis in two stages: first we collect all
globally visible names, and then we analyze scoped names.

Unscoped name analysis Globally visible names can be stored directly as
dynamic rules that map an identifier to its declaration site. For NWL, we use

Chapter 4. The Spoofax Language Workbench 91

declare-top =
declare-primitive-types;
alltd(declare);
rename-top

declare-primitive-types =
rules(
PrimitiveDef: "String" → "String"
PrimitiveDef: "Int" → "Int"
...

)

declare: d@Entity(x, p*) → d
where rules(EntityDef : x → d)

declare: d@Action(x, param*, stat*) → d
where rules(ActionDef : x → d)

declare: Import(x) → Import(x)
where open-import(

resolve-import
, parse-file
, declare-top
)

resolve-import: Import(x) → $[[<project-dir>]/[x].nwl]

Figure 4.14 Name analysis for globally visible names.

the EntityDef and ActionDef dynamic rules for global names (Figure 4.14).
The declare-top strategy controls the stages of the name analysis. It first
declares all primitive types, then applies the declare rule to the outermost
definitions, and finally calls rename-top to analyze scoped names (shown
below). The declare rules match entities and actions, and define dynamic
rules that map each name x to its definition site d.

For import declarations, Spoofax provides a generic open-import strategy
(used in Figure 4.14, bottom). This strategy ensures that files are cached after
they are parsed and avoids cycles in the dependency graph. The open-import
strategy takes three strategy expressions as its arguments, that respectively
resolve the filename of an import (resolve-import), parse the file (parse-
file), and analyze the file (declare-top).

Scoped name analysis For scoped names, we base our analysis on the notion
of consistent renaming [Waite and Goss, 1984], which is the task of renaming
all names in a program such that they are unequal to all other names that
do not correspond to the same declaration site. However, rather than directly
changing the names in the tree, we add annotations that satisfy this unique-
ness requirement. This way, the abstract syntax tree remains the same modulo
annotations, aiding in debugging and traceability of analysis and code gener-
ation.

As an example, Figure 4.15 shows how an action definition in concrete
syntax (top), abstract syntax (middle), and as abstract syntax with renaming
annotations (bottom). After renaming, each local name combined with its
annotation is globally unique: for instance, we can distinguish "s"{"a_0"}

from any other identifier s defined elsewhere.

92

action add(s : Set<User>) {
for (u : User in s) { ... }

}

Action("add",
[Param("s", SetType(SimpleType("User")))],
[ForAll("u", SimpleType("User"), Var("s"), ...)]

)

Action("add",
[Param("s"{"a_0"}, SetType(SimpleType("User")))],
[ForAll("u"{"b_0"}, SimpleType("User"),

Var("s"{"a_0"}), ...)]
)

Figure 4.15 Consistent renaming of an action definition.

rename-top = alltd(rename)

rename: d@Param(x, t) → Param(y, t) (A)
where y := x{<new>};

rules(
VarDef : y → d
RenameId : x → y

)

rename: Var(x) → Var(y) (B)
where y := <RenameId> x

rename: Action(f, p1*, s1*) → Action(f, p2*, s2*) (C)
where {| RenameId:

p2* := <rename-top> p1*;
s2* := <rename-top> s1*

|}

rename: d@ForAll(x, t, e, s1*) → ForAll(y, t, s2*)
where {| RenameId:

y := x{<new>};
rules(
VarDef : y → d
RenameId : x → y

);
s2* := <rename-top> s1*

|}

Figure 4.16 Name analysis using renaming rules.

Figure 4.16 shows renaming rules that add consistent naming annotations
to local variables. The first definition of rename (Figure 4.16 (A)) operates on
action parameters. It replaces the name x of a parameter with the annotated
name x{<new>}, where <new> generates a fresh, globally unique name. The
VarDef dynamic rule is defined to map the annotated name to the definition
site. The RenameId dynamic rule records the renaming for the current scope:
for each following occurrence of x, it should given the name y (Figure 4.16

(B)). Any names that are not declared will not be renamed, and are reported
as errors in the check stage as VarDef is never defined for them.

To respect the scopes of the language, we use dynamic rule scopes [Braven-
boer et al., 2006b] to reflect scoping construct of the language. This Stratego
feature takes the form {| r: ... |} and ensures that any definition of the

Chapter 4. The Spoofax Language Workbench 93

type-of: StringLit(x) → SimpleType("String")
type-of: Entity(x, prop*) → SimpleType(x)
type-of: Property(_, t, _) → t
type-of: Param(x, t) → t
type-of: ForAll(x, t, _, _) → t
type-of: ForAllExp(t) → SetType(t)
type-of: Var(x) → <type-of> (<VarDef> x)
type-of: PropAccess(e, f) → t
where p := <lookup-property(|f)> (<type-of> e);

t := <type-of> p

Figure 4.17 Typing rules.

lookup-property(|f):
Entity(y, p*) → <fetch-elem(?Property(f,_,_))> p*

lookup-property(|f):
SimpleType(y) → <lookup-property(|f)> (<EntityDef> y)

is-simple-type = is-primitive-type <+ is-entity-type

is-primitive-type: SimpleType(x) → <PrimitiveDef> x

is-entity-type: SimpleType(x) → <EntityDef> x

Figure 4.18 Helper rules for error checking.

dynamic rule r made directly or indirectly within the scope is no longer visi-
ble after the scope is exited. The rename rule for actions (Figure 4.16 (C)) uses
this feature to scope variables declared within an action. As the RenameId for
these variables is undefined at the end of the scope, the variables are no longer
visible in any following actions. The last definition of rename combines local
renaming and scoping for the for statement.

Type analysis Type analysis can be specified using rules that project a lan-
guage construct to its type. The type-of rule maps language constructs to
their type (Figure 4.17). Typing rules for literals generally specify a constant
type (e.g., for StringLit). Typing rules for declarations can fetch the type
from one of the subterms (e.g., for entities or properties). Other typing rules
use name analysis rules to fetch a definition and then apply the basic type-of
rules (e.g., for Var). For compound expressions such as PropAccess, we fetch
the property definition corresponding to the expression and return its type.
To fetch the property f of a given type we use the lookup-property(|f)

helper rule, where the pipe (|) indicates that it receives a term argument f (as
opposed to a strategy argument).

Other projection rules can test for various properties based on the name
analysis. Figure 4.18 illustrates additional projection rules that are used in the
check rules. Of these, the lookup-property rule is of particular interest. It
uses the Stratego standard library strategy fetch-elem to try and fetch the
property f from an entity definition. A second definition fetches the property
given a type instead of an entity.

94

editor-resolve:
(selected, pos, ast, path, project-path) → target
where target := <decl-of> selected

decl-of: Var(x) → <VarDef> x
decl-of: SimpleType(x) → <EntityDef> x
decl-of: Submit(x) → <ActionDef> x

Figure 4.19 Rules for reference resolving.

4.4.6 Reference Resolving and Occurrence Highlighting

Reference resolving and occurrence highlighting are specified using a con-
trol rule that given an identifier, respectively looks up its declaration or all
occurrences of that identifier. For reference resolving, this rule is shown in
Figure 4.19. The rule is given the selected node in the tree, its position (spec-
ified as a list of child offsets), the decorated abstract syntax tree, and the file
system paths. The same tuple is given to the control rules of all other semantic
editor services (with the exception of the analysis and error checking control
rule). Reference resolving is implemented by simply applying the dynamic
rules from the name analysis stage to the selected identifier, using a decl-of

helper rule to fetch the appropriate declaration. Occurrence highlighting can
be specified in a similar fashion, but is omitted here for reasons of brevity.
Both services rely fully on the name analysis specification and only require a
small addition to implement the editor service.

4.4.7 Content Completion

Semantic content completion (sometimes called content assist) provides com-
pletion proposals based on the syntactic and semantic context of the expres-
sion that is being edited. Content completion can provide suggestions for
globally visible names as well as locally scoped names. For this reason, we
integrate content completion into the name analysis of Section 4.4.5.

An important aspect of our design for the content completion service is
its interface to the semantic analysis. Content completion suggestions must
be provided regardless of the syntactic state of a program: an incomplete
expression ‘blog.’ does not conform to the syntax, but for content comple-
tion it must still have an abstract representation. One approach (as taken by
IMP [Charles et al., 2009], for example) is to require the language developer
to add special productions to the grammar that map these incomplete expres-
sions to an abstract representation. Unfortunately, this means the developer
has to do extra work and has to account for all cases where content completion
may be expected in the grammar.

In our approach, we opt for a generic representation of incomplete syn-
tactic expressions: we introduce an artificial COMPLETION term to the abstract
representation at the point of the cursor. For example, if a variable is expected
at the cursor, a Var(COMPLETION("p")) is placed at the corresponding point
in the abstract representation, with p the (possibly empty) identifier prefix

Chapter 4. The Spoofax Language Workbench 95

rename-top = alltd(propose-completion <+ rename)

propose-completion:
Var(COMPLETION(p)) → all-vars
where all-vars := <all-keys-RenameId>;

rules(ContentProposals: () → all-vars)

propose-completion:
PropAccess(e, COMPLETION(p)) → p2*
where Entity(x, p*) := <EntityDef>;

p2* := <map(property-name)> p*;
rules(ContentProposals: () → p2*)

editor-complete:
(selected, position, ast, path, project-path) → p*
where editor-init;

ast’ := <declare-top> (<desugar-top> ast);
p* := <ContentProposals> ()

Figure 4.20 Content completion rules.

that was already typed in. Similarly, compound expressions can take a form
like PropAccess("blog",COMPLETION("p")).

In Figure 4.20 we define content completion for variables and property ac-
cess expressions by extending the name analysis from Figure 4.16. We replace
the definition of rename-top with one that applies propose-completion be-
fore it applies rename. The first definition of propose-completion provides
completion suggestions for variables, by taking all keys of the RenameId dy-
namic rule. Stratego provides the derived function all-keys-RenameId to do
this. As the rule is evaluated within the context of the analysis, this results
in a list of all variables in the current scope, and thus all valid suggestions
if a variable is expected at the cursor location. The ContentProposals dy-
namic rule stores the list. The second propose-completion rule provides
completion suggestions for property access expressions, by fetching all prop-
erty names and recording them in the dynamic rule. The control rule for
content completion is called editor-complete. It first performs name analy-
sis (extended with content completion support) and then fetches the value of
the ContentProposals rule.

The editor descriptor specifies which control rule to use for content comple-
tion, and may specify a character sequence that automatically triggers content
completion. For example, for NWL, content completion should be automati-
cally triggered when the user types ’.’ or ’:’.

4.4.8 Transformations, Code Generation, and Views

Based on the Stratego language, Spoofax supports transformations and code
generation using concrete object syntax [Visser, 2002], allowing rules to be
written using the concrete syntax of the language that is transformed as pat-
terns. These patterns can be syntactically checked against the syntax of the
language. The Stratego compiler converts the patterns to abstract syntax.
Concrete syntax can be very effective for writing modular transformations
that are divided into a series of small, separate transformation steps [Hemel

96

generate-java:
(selected, position, ast, path, project-path) →
($[[path].java], <to-java> selected)

to-java:
Entity(x, p*) →
$[class [x] {

[p2*]
}

]
where p2* := <to-java> p*

to-java:
Property(x, Type(t)) → $[
private [t] [x];
public [t] get_[x] { return [x]; }
public void set_[x] ([t] [x]) { this.[x] = [x]; }

]

Figure 4.21 Code generation rules.

et al., 2009]. After transformation using concrete syntax, a pretty printer can
produce text output from the result. We elaborate on concrete object syntax
in Chapter 7.

Concrete object syntax can be contrasted to template engines, where no
further transformation steps are possible after code is rewritten (unless the
resulting text is re-parsed). Stratego also offers language support for template
engine-like transformations, by providing indentation-safe string interpola-
tion as a “quick and dirty” code generation solution. For the small NWL
language we opted for this approach to code generation: after some desug-
aring and normalization, NWL is printed to Java, and no subsequent trans-
formations are applied. Figure 4.21 shows code generation rules using string
interpolation and the control rule for generating Java.

Transformations and code generation can be used as a basis for views.
Views can be described using descriptors, and can have a title, a rule name,
and a number of annotations:

builder: "Generate Java code" =
generate-java (openeditor) (realtime)

builder: "Show abstract syntax" =
generate-aterm (openeditor) (realtime) (meta)

This specification defines views to show Java code and the abstract syntax of
a selection. The (openeditor) annotation specifies that an editor should be
opened for the view (rather than just generating code and saving it a file). The
(realtime) annotation specifies that the view should be updated in real-time
as the source file is changed. Finally, the (meta) annotation specifies that the
view should only be available to language engineers, not to end developers.

4.5 I M P L E M E N TAT I O N

The implementation of Spoofax is based on the Eclipse platform, allowing it
to be used together with other, language-independent Eclipse plugins such as
build management tools and other language-specific plugins.

Chapter 4. The Spoofax Language Workbench 97

For the definition of generic IDE components we make use of the IMP
framework [Charles et al., 2007, 2009], which greatly simplified the construc-
tion of these components by abstracting over the Eclipse API and guiding us
through the development process using wizards. Languages developed in
our environment maintain compatibility with IMP. In addition to the service
descriptor DSLs, it is also possible to use Java-based implementations using
the IMP framework to implement components of a language.

The language workbench integrates the language-parametric editor service
components based on IMP with the Spoofax libraries for parsing (JSGLR)
and running Stratego (Stratego/J)3. As Spoofax/IMP – the official name of
the workbench implementation – integrates nearly all of the libraries of the
Spoofax project, the workbench is also simply called the Spoofax language
workbench.

4.5.1 Language-parametric Editor Services

From an implementation point of view, only a small portion of an IDE or
IDE plugin implementation is actually language-specific. A great part of the
implementation of IDE components deals with accidental complexity that has
little or no relevance to a particular language. IDE development frameworks
such as IMP [Charles et al., 2007, 2009] and the DLTK [DLTK, 2007] simplify
the implementation of these components by abstracting away from many of
these details.

In Spoofax we implemented IDE components in a language-parametric
fashion. Each component is written in Java, and interacts with the APIs for
abstract syntax trees, tokens, text editor widgets, the file system, the parser
and error recovery, etc. However, it does not include any specific knowledge
of the language it is used for. Instead, the components interpret an editor de-
scriptor that configures these language-specific parts. For each editor service,
a factory class that reads the editor descriptor for that service, and instanti-
ates the language-parametric implementation class for it. These classes use
the standard Java collection classes such as hash tables to efficiently store and
access the language configuration. For example, for the syntax highlighting
service, we maintain hash tables that specify which formatting style to apply
to which kind of character sequence. For parsing, we use a generated parse
table that is dynamically loaded into the environment.

We use proxy classes to implement the Eclipse and IMP extension points
for editor services, satisfying the static Eclipse/OSGi component model for
loading plugins. These proxy classes invoke the corresponding factory class
as services are first used, loading the parametrized implementation classes.
When a language definition is changed, the proxy classes seamlessly load
new services from the descriptors.

Parser technology and IDE components Key for rapid feedback in interactive
environments is a parser that supports error recovery in order to parse files

3Available from http://strategoxt.org/. The architecture of the Java implementation
of Stratego is described in Chapter 3.

98

http://strategoxt.org/

with syntax errors and incomplete programs as a programmer edits the text.
As an example, consider the file at the left of our screenshot in Figure 4.4.
This file is not syntactically correct, since the last production does not have a
symbol it matches to. To still provide content completion, the parser still has
to produce a sensible abstract representation for the editor services to operate
on. In Chapter 6 we describe language-generic error recovery techniques that
we use in the Spoofax language workbench to address this issue.

Most code editors and IDEs implement syntax highlighting using regular
expressions or a scanner. In Spoofax, we use a scannerless parser, and take
a different approach: we construct a stream of artificial tokens after parsing
rather than before parsing, based on the lexical structure of parsed sentences.
We elaborate on the implementation of this approach in Section 6.8.4.

A number of editor services directly interact with the syntactic state of
the parser. For instance, the bracket insertion service needs to determine if
the cursor is inside a string literal or a comment. If that is the case, and
the user types an opening bracket {, the service should not automatically
insert the closing bracket }. One way to determine whether the cursor is
inside a string or comment is simply having a language-specific “blacklist”
of syntactic constructs where bracket insertion should be disabled. However,
to do this in a language-agnostic way, we had to take a different approach.
Instead, we analyze the active production at the selected character, which
can be determined from the parse tree. If it is a lexical production, we can
examine the lexical character class that can be parsed by it. If the character
class includes the bracket that would be inserted (e.g., }), then that indicates
that the bracket would become part of the lexical. For these cases, closing
bracket insertion is disabled.

Another editor service that interacts directly with the parser is content com-
pletion. As we discussed in Section 4.4.7, programs are often in a syntactically
incorrect state when a completion proposal is demanded. For example, an ex-
pression ‘e.’ may be a property access expression in the making. If content
completion is triggered at that point, we insert a placeholder identifier at the
point of the cursor, forming an expression ‘e.placeholder’, and parse the
file again. This ensures that the expression is still parsed as a compound ex-
pression. Any missing semicolons, parentheses, etc. can be picked up by the
regular error recovery rules. The placeholder also allows us to easily add an
artificial COMPLETION constructor at the point where the placeholder appears,
which is used for the content completion analysis of Section 4.4.7.

Interpretation versus compilation Using language-parametric editor services
does not enforce an interpretative model. It is also possible to use language-
parametric editor services with compiled Java classes that are dynamically
loaded using classloaders. In fact, we use classloaders to load compiled Strat-
ego specifications for semantic services. Using a compiled model can lead to
improved runtime performance, but comes at the cost of compilation speed.
For Stratego, developers can choose whether to interpret or compile specifi-
cations, depending on whether they want more agile development or if they
want to distribute the plugin to “end developers.” A similar approach could

Chapter 4. The Spoofax Language Workbench 99

also be used for syntactic editor services, but we feel that the trade-off of com-
pilation time versus performance for those services may be unacceptable: we
have never seen performance problems for those services based on an inter-
pretative model.

4.5.2 Semantic Services and Rewrite Rules

The Stratego language was originally compiled to C, but we developed a more
flexible back end that compiles it to Java and interoperates with Eclipse, de-
scribed in Chapter 3. Where the C-based Stratego operates only on the ATerm
data type of the ATerm library [van den Brand et al., 2000], the Java implemen-
tation is more flexible and can transform any tree structure that implements
the IStrategoTerm interface. Using adapter classes, any Java data type can
be made to implement it. This approach is called the program object model
adapter (POM) approach. Previous experience with a Stratego interpreter on
Java showed that this approach allows rule-based transformations to interop-
erate with Java-based frameworks such as a compiler front ends [Kalleberg
and Visser, 2007a].

We use the POM adapter approach to transform trees that maintain po-
sition and layout information. By using a custom factory class used to con-
struct new IStrategoTerm instances, we implemented a form of origin track-
ing [van Deursen et al., 1993] for Stratego. Origin tracking is key to concise,
position-agnostic specification of transformations and analyses in Spoofax.

The term factory class is used to construct new terms by compiled and
interpreted Stratego programs. Term factories have methods to create new
terms given a constructor name/and or children or by parsing them from
files [Kalleberg and Visser, 2007a]. We added methods to replace subterms
of a term. Terms are functional, immutable data types, so by default these
methods simply return a new term with the given subterms. In Spoofax, we
return a new term that maintains a link to the original term and its children.
We changed the implementation of the Stratego traversal operators all, some,
and one to use the new “replace” methods. This way, all strategies that use
these combinators (such as alltd and collect-all, shown in this chapter)
support origin tracking.

4.5.3 Editor Extensibility and Customization

Language workbenches provide an integrated development environment for
building a language and IDE support, abstracting over low-level IDE imple-
mentation details. Still, it can be useful to have a “backdoor” to escape the
environment and add features that (we) the developers of the workbench had
not anticipated.

Spoofax language definitions can be extended using the standard Eclipse
extension model. New components can be added to plugins simply by declar-
ing them in the plugin.xml descriptor file and implementing them in Java.
Since we base our implementation on IMP, helpful IMP wizards can even

100

generate skeletal Java implementation for common editor services. Once de-
clared, Java implementations of services can even override the Spoofax im-
plementations. Drawbacks of adding services this way are that they do not
provide the same abstractions as DSLs would, and that they tie developers to
the standard Eclipse way of plugin development: custom, Java-based services
can only be used in a secondary Eclipse instance.

4.6 E X P E R I E N C E

We have substantial experience in using Spoofax and languages created with
Spoofax. Several languages are part of the standard distribution, and are used
in the development of new languages:

• The SDF language. While this language was implemented before the
Spoofax workbench, we specified the static semantics of SDF using the
idioms in this chapter to support editor services such as views on syntax
productions and content completion.

• The ESV editor descriptor language of Section 4.3 and 4.4.

• The Stratego language. We described the static semantics to provide
full-featured Stratego IDE support.

• The ATerm language [van den Brand et al., 2000], used for abstract syn-
tax. In addition to the Spoofax specification, we added special support
for views based on the source file of an ATerm file (e.g., allowing “gen-
erate Java code” to be applied to an ATerm created from an NWL file).

Spoofax has also been used, by ourselves and others, to develop a variety
of new languages covering different domains. Some have been developed
independently of our environment before Spoofax was available, and have
used Spoofax to describe the syntax and static semantics for IDE integration.
A selection:

• Acoda [Vermolen et al., 2011] is a tool set that uses DSLs to aid in data
migrations as data models evolve. Given different versions of a data
model, it can automatically derive textual, editable evolution traces that
can be executed to perform data migration. The data model editor uses
views to generate these traces and supports the full range of editor fea-
tures for editing them.

• PIL [Hemel and Visser, 2009], a Java-like, object-oriented programming
language that targets multiple software platforms.

• Mobl [Hemel and Visser, 2011], a DSL for web-based mobile phone ap-
plications. It generates HTML/Javascript code when files are saved,
allowing them to be directly tested in a browser.

• SugarJ [Erdweg et al., 2011a,b], an extensible language based on Java,
Stratego, and SDF.

Chapter 4. The Spoofax Language Workbench 101

• A language for testing Spoofax language definitions, described in Chap-
ter 8. This language syntactically and semantically embeds a language
under test and evaluates test cases in the editor as they are edited.

• An assembly language for Java bytecode (based on the language of
Chapter 2), used mainly as a pedagogical tool for inspecting and creat-
ing Java class files, or to directly generate bytecode from other Spoofax
languages.

• NWL (shown in this chapter), and WebDSL [Groenewegen et al., 2010], a
DSL for the Web. Hemel et al. [2009, 2011] describe the implementation
of WebDSL and its support for static consistency checking.

• Aster (described in Chapter 5), an attribute grammar language based on
strategies for description of attribute propagation patterns.

Observations To describe a few key lessons learned from our experience,
Spoofax allows for a much more agile development model than was previ-
ously possible with separate tools for syntax definition, meta-programming,
and especially IDE development. As languages are developed they are di-
rectly usable in the IDE from the point that a syntax is defined. From there, de-
velopers can incrementally add additional functionality, from presentational
editor services to semantic analyses and code generation. Not all languages
listed above have yet reached the level of maturity where they incorporate the
full set of services from Figure 4.2, but they still provide an improved user ex-
perience compared to a standard text editor. Using Spoofax also changed the
deployment model of the languages: they can now be distributed as Eclipse
plugins instead of separate command-line compilers, which tends to be much
more appealing to “end developers.”

In our experience the Spoofax workbench significantly lowers the bar for
creating a new language by providing an interactive environment for devel-
opment and playing with it as it evolves. We have developed various experi-
mental languages to try out new language concepts, and have been using it for
the past two years in courses on compiler construction and model-driven soft-
ware engineering. While meta-programming naturally comes with a learning
curve, Spoofax allows students to quickly experiment with language features
and experience all aspects of language development in a unified environment.
For the course on compiler construction, we use the bytecode language to al-
low students to experiment with stack architectures and abstractions over a
low-level language. Based on the testing language of Chapter 8, they can do
test-driven language development, and checking assignments can be partially
automated.

Customization Based on the Eclipse platform, Spoofax language plugins are
open to various forms of extensions and integration with other plugins. In the
WebDSL plugin we particularly made use of that, and integrated the plugin
with the Eclipse Web Tools Platform for testing and deploying web applica-
tions. The plugin also provides its own wizard that configures database and

102

deployment configuration. These customizations have been implemented as
custom Java code, directly embedded in the plugin itself. The WebDSL plugin
also integrates with the Acoda plugin: Acoda can extract data models from
web applications, show these in a view, and then derive evolution traces by
comparing data models.

Evolution As languages evolve with new insights, new constructs may be
added and others removed, which can lead to incompatibilities with older
programs. One way Spoofax assists in migrating older DSL programs to
newer revisions of a language is through the notion of deprecated syntax.
Syntactic constructs marked deprecated are displayed with a warning in the
editor, and may be transformed to updated constructs using desugaring rules
(Section 4.4.2) or by a migration transformation that processes these constructs
and produces a migrated program. An area of future work is to provide tool
support to assist in these migrations, much like Acoda can do for data models.

4.7 D I S C U S S I O N A N D R E L AT E D W O R K

Spoofax is a language workbench for textual domain-specific languages. Tex-
tual languages benefit from integration with standard, text-based version con-
trol systems and issue trackers, easy importing and exporting of files from
other tools (avoiding vendor lock-in), files that are editable with other tools,
and free text editing. Notable other tools for creating and using textual DSLs
are the Meta-Environment [Klint, 1993; van den Brand et al., 2001], EMF-
Text [Heidenreich et al., 2009a], MontiCore [Krahn et al., 2008], TCS [Jouault
et al., 2006], TEF [Scheidgen, 2010], and Xtext [Efftinge and Voelter, 2006].
A thorough comparison of a number of these tools has recently been prov-
ided by Goldschmidt et al. [2008] and by Pfeiffer and Pichler [2008]. In our
discussion we contrast these tools to Spoofax.

The Meta-Environment is a platform for language development, source
code analysis, and source code transformation [Klint, 1993; van den Brand
et al., 2001]. It includes SDF, the ASF term rewriting language, and provides
an IDE framework written in Java. The Meta-Environment derives basic syn-
tax highlighting from SDF grammars. ASF tree-traversal may also be used to
annotate the AST with coloring directives. ASF is also used to specify the typ-
ing rules of the language, and may include custom error messages, presented
in a separate view. The original implementation of the Meta-Environment
supported the SEAL language [Koorn, 1993], allowing editors to be extended
with additional widgets. While these could interact with the editor, they could
only do so if it was in a syntactically consistent state, lacking the interactivity
of modern parser-based editor services.

Compared to the Stratego language, ASF has limited expressive power.
ASF is a pure term rewriting language, whereas Stratego adds strategies [Vis-
ser et al., 1998] and dynamic rules [Bravenboer et al., 2006b], which have been
key for concise, reusable analyses in Spoofax. In Spoofax we use origin track-
ing for position-agnostic specification of editor services. Origin tracking was

Chapter 4. The Spoofax Language Workbench 103

originally implemented as a prototype for ASF [van Deursen et al., 1993], but
is no longer used in the current version.

The EMFText [Heidenreich et al., 2009a], TEF [Scheidgen, 2010], and TCS
[Jouault et al., 2006] workbenches take a different approach to syntax devel-
opment than we do in Spoofax. Rather than combining the specification of
concrete and abstract syntax into a single grammar, they start with the con-
struction of a metamodel. TCS and EMFText have a generic concrete syntax
that can be derived from a metamodel, at the cost of domain-specific notation.
In EMFText, developers also have the option to write their own grammar with
productions that map to elements of the metamodel. On the one hand, this
approach allows the use of existing EMF metamodels for building new lan-
guages, which can be useful in certain cases. On the other hand, the approach
is also less agile than using a syntax formalism that integrates abstract and
concrete syntax: it introduces redundancies in the grammar, and requires the
syntax to be maintained in two places. The three workbenches provide error
markers, reference resolving, and content completion that can be customized
using Java, but none of the presentation and editing services of Figure 4.2.

Xtext [Efftinge and Voelter, 2006] is also based on EMF metamodels, but
integrates the specification of concrete syntax and metamodel into a sin-
gle grammar specification. Xtext was originally part of openArchitecture-
Ware [Efftinge et al., 2008], and used the OCL-like Xtend language for model
transformations and for the specification of problem markers using constraints
and for reference resolving. Recently, Xtext has been reimplemented based on
TMF4. It now relies on grammar annotations and uses Java code to describe
the static semantics of languages and all but the most basic editor services.

Abstract representation The abstract representation of programs in Spoofax
is based on trees, where dynamic rules superimpose graph structures. In
contrast, EMF is based on graphs. EMFText and Xtext allow annotations in
grammar productions to specify simple use-def relations between productions
that introduce back-edges to the abstract syntax tree, effectively producing
graphs. This approach of syntactic name resolution only works for names
with a global scope (or lexical scopes in the case of EMFText). It is inadequate
for compound expressions (e.g., blog.author). EMFText and Xtext resort to
imperative Java code to specify these relations, or, in the latest version of Xtext,
the Java-like Xtend language. In Spoofax, the name analysis is fully specified
in a rule-based Stratego specification. An interesting future step for Spoofax
could be to map abstract syntax trees and dynamic rules to EMF models, and
express constraints over such models with Stratego.

MontiCore [Krahn et al., 2008] generates custom Java classes to represent
the abstract syntax. It supports basic presentational services, which are spec-
ified as grammar properties. Syntax coloring is specified as lists of keywords
to highlight. Pre-defined (Java-style) comments are supported. Folding is
specified by a list of non-terminals. For semantic editor services, MontiCore

4http://www.eclipse.org/modeling/tmf/.

104

http://www.eclipse.org/modeling/tmf/

grammars specify events, which may be specialized with user-defined Java
classes.

Parsing Interestingly, with the exception of the Meta-Environment and TEF,
all tools that we described generate ANTLR parsers. TEF uses a the RunCC
parser generator. ANTLR’s LL(k) or LL(*) parsers cannot cope with left recur-
sion in grammars. Likewise, RunCC’s LR(k) parsers are limited to a subset of
the context-free grammars. This means that they are not closed under com-
position, which means that adding extensions to a grammar or reusing gram-
mars can introduce conflicts in the parser [Kats et al., 2010]. These parsers
also rely on using a single, separate scanner, which means that adding exten-
sions with a different lexical syntax is not possible. In contrast, Spoofax and
the Meta-Environment use SDF to specify grammars and generate scannerless
generalized LR (SGLR) parsers. Based on SGLR parsing, SDF grammars can
be freely composed, allowing for embedded languages and language exten-
sions.

Dynamically loading editor services One area in which Spoofax excels com-
pared to other tools is in supporting agile language design and development.
Languages can be incrementally developed and changes can be dynamically
loaded into the environment. Spoofax automatically derives syntactic editor
services from the syntax definition. Editor services can then be selectively
customized as desired. In contrast, the other tools often provide generic syn-
tax highlighting for keywords and hardcoded default symbols such as strings,
but do not derive highlighting or other services based on analysis of the gram-
mar. Of the other tools, only the Meta-Environment and TCS have the ability
to dynamically reload language definitions without requiring the editor envi-
ronment to be relaunched. In the case of the Meta-Environment, this comes
at the cost of the idiosyncrasies of a custom IDE environment rather than in-
tegration into a common language platform such as Eclipse. TCS integrates
into Eclipse, but is primarily designed for adding a textual syntax to lan-
guages that have a model-based principal representation. While it allows free
text editing, it does not allow the same flexibility in language design as other
workbenches where language engineers can write their own grammar.

We use the Stratego language for analyses, transformations, and code gen-
eration. Other workbenches use Java classes for analysis, sometimes com-
bined with grammar annotations, Java visitors for transformations, and tem-
plate engines for code generation. Based on strategies and rewrite rules, Strat-
ego concisely specify analyses and transformations. Providing a choice of con-
crete object syntax (ensuring syntactic correctness) [Visser, 2002] and string
interpolation, Stratego also provides a flexible solution for code generation.

Meta-programming languages Other notable meta-programming languages
include ASF+SDF [Klint, 1993], JastAdd [Hedin and Magnusson, 2003], Ras-
cal [Klint et al., 2009], and TXL [Cordy et al., 1991]. They provide limited
IDE support at this point, although the developers of JastAdd and Rascal are
actively working on IDE support dedicated to their meta-programming lan-
guages. However, much like the original Spoofax Stratego editor [Kalleberg

Chapter 4. The Spoofax Language Workbench 105

and Visser, 2007b], they do not provide a language workbench solution for
languages developed with them. Like Stratego, ASF+SDF and TXL support a
form of concrete object syntax, but they do not support string interpolation.
Only Rascal supports both forms of code generation. JastAdd relies on Java
visitors on the abstract syntax tree to generate code.

Homogeneous language embeddings Our work has focused on heterogeneous
formalisms for language definition, where a meta-language is used to de-
fine or extend a separate object language. In contrast, with homogeneous
language embedding systems, the meta-language is used to extend itself [Hu-
dak, 1998; Tratt, 2008]. Examples include Converge [Tratt, 2008], a multi-stage
dynamically typed language; Template Haskell [Sheard and Jones, 2002], a
Haskell-based meta-programming system based on compile-time generative
programming; and Helvetia [Renggli et al., 2010], a Small-talk based system.
Of these, Helvetia is notable for providing extensible IDE support in addition
to an extensible language.

On the one hand, homogeneous approaches can help interoperability be-
tween DSLs by ensuring they share a common basis. On the other hand, DSLs
developed are also limited by their host language, in terms of its type sys-
tem (or lack thereof), representation of runtime values, the execution model,
and the runtime platform. For example, a language such as mobl [Hemel
and Visser, 2011], which targets a combination of JavaScript and HTML5 and
introduces its own type system, cannot be expressed using a homogeneous
approach.

4.8 O P E N I S S U E S A N D F U T U R E W O R K

In this chapter we showed that the Stratego language can be used for con-
cise specifications of analysis, transformations, and code generation. Still,
many other meta-programming languages exist that each have their own mer-
its and uses. We believe that Spoofax has the potential to become a common,
open platform for hosting multiple meta-programming languages. Spoofax
defines a lightweight, technology-agnostic interface between editor services
and semantic analyses. Analysis specifications in other meta-programming
languages could follow the same interface, and to some degree may follow
the same idioms for reuse, allowing them to implement the same set of edi-
tor services. One constraint is the representation of the abstract syntax, which
may require marshaling to another form. Another is our use of origin tracking
in the specification of analyses. Without origin tracking, semantic specifica-
tions would have to explicitly ensure that analysis results contain position
information.

Another meta-language for analyses and transformations that we have used
in Spoofax is the Aster attribute grammar language (Chapter 5). As the lan-
guage is based on Stratego, Aster can be used in Spoofax based on the same
interface and data structures. Still, more experience is needed to identify
patterns in the paradigm of decorated attribute grammars for efficient speci-
fication of editor services and complete DSLs.

106

Another area of future work is in providing tool support for first-class mod-
ular language components. Based on the modular SDF syntax formalism and
SGLR parsing, it is possible to decompose languages into separate, reusable
components [Bravenboer and Visser, 2004]. As an example, WebDSL [Groene-
wegen et al., 2010] reuses the syntax definition of HQL for queries. Such com-
positions still require much manual effort in terms of managing and building
project sources, as Spoofax provides only limited tool support for these forms
of reuse. One ideal scenario may be that developers of a language could
just pick and match the language features they need, and that the environ-
ment composes them. Composition at the semantic level poses additional
challenges. Based on a uniform type system and a single host language, it
is possible to combine homogeneous language components. Notably, Helve-
tia [Renggli et al., 2010], MPS [Voelter and Solomatov, 2010], and SugarJ [Erd-
weg et al., 2011a,b] rely on these properties. However, if a different host
language or type system is used, reuse is currently limited to the syntactic
level.

4.9 C O N C L U S I O N

Modern IDEs increase developer productivity by incorporating many differ-
ent kinds of editor services specific to the syntax and semantics of a lan-
guage. They assist developers in understanding and navigating through the
code, they direct developers to inconsistent or incomplete areas of code, and
they even help with editing code by providing automatic indentation, bracket
insertion, and content completion. As a consequence, developers that have
grown accustomed to these services are growing less accepting of languages
that do not have solid IDE support.

To efficiently develop languages with IDE support, Spoofax supports se-
lective, incremental development of editor services that can be dynamically
loaded, evaluated, and tuned in the same environment. Using high-level lan-
guages to specify the syntax and semantics of a language, it provides a lan-
guage development solution that greatly increases productivity of language
engineers in building language and IDE components compared to using hand-
written components or separate language engineering tools.

Acknowledgments This research was supported by NWO/JACQUARD
projects 612.063.512, TFA: Transformations for Abstractions, and 638.001.610,
MoDSE: Model-Driven Software Evolution. We would like to thank Karl Trygve
Kalleberg for his many contributions to the Spoofax project; the develop-
ment teams of IMP, SDF, (J)SGLR, and Stratego/XT for their valuable efforts;
Maartje de Jonge and Emma Söderberg for their contributions to error recov-
ery with JSGLR; Rob Vermaas, Bernhard Merkle, and the anonymous review-
ers for suggestions for an earlier version of this chapter; and finally our users
for providing continuous feedback and coming up with interesting new ideas.

Chapter 4. The Spoofax Language Workbench 107

108

5
Decorated Attribute Grammars:
Attribute Evaluation Meets Strategic
Programming

A B S T R A C T

Attribute grammars are a powerful specification formalism for tree-based
computation, particularly for software language processing. Various exten-
sions have been proposed to abstract over common patterns in attribute gram-
mar specifications. These include various forms of copy rules to support non-
local dependencies, collection attributes, and expressing dependencies that
are evaluated to a fixed point. Rather than implementing extensions natively
in an attribute evaluator, we propose attribute decorators that describe an ab-
stract evaluation mechanism for attributes, making it possible to provide such
extensions as part of a library of decorators. Inspired by strategic program-
ming, decorators are specified using generic traversal operators. To demon-
strate their effectiveness, we describe how to employ decorators in name, type,
and flow analysis.

5.1 I N T R O D U C T I O N

Attribute grammars are a powerful formal specification notation for tree-
based computation, particularly for software language processing [Paakki,
1995], allowing for modular specifications of language extensions and analy-
ses. At their most basic, they specify declarative equations indicating the func-
tional relationships between attributes (or properties) of a tree node and other
attributes of that node or adjacent parent and child nodes [Knuth, 1968]. An
attribute evaluator is responsible for scheduling a tree traversal to determine
the values of attributes in a particular tree.

Attribute grammars are nowadays employed in a wide range of applica-
tion domains and contexts. To extend their expressivity for use in particular
domains, and to abstract over commonly occurring patterns, basic attribute
grammars have been extended in many ways, in particular supporting at-
tribution patterns with non-local dependencies. For example, remote attribu-
tion constructs allow equations that refer to attributes of nodes arbitrarily far
above or below the node for which they are defined [Boyland, 2005; Kastens
and Waite, 1994]. Chain attributes express a dependence that is threaded in a
left-to-right, depth-first fashion through a sub-tree that contains definitions of
the chain value [Kastens and Waite, 1994]. Self rules provide a local copy of
subtrees, which may be adapted for tree transformations [Baars et al., 2003].

109

More generally, collection attributes enable the value of an attribute of one node
to be determined at arbitrary other nodes [Boyland, 2005; Magnusson et al.,
2007]. A different kind of remote attribute is provided by reference attribute
grammars that allow references directly to arbitrary non-local nodes and their
attributes [Hedin, 2000], allowing for attributes that look up a particular node
or collection of nodes. Finally, some attribute grammar systems support equa-
tions with circular dependencies that are evaluated to a fixed point [Boyland,
1996; Magnusson and Hedin, 2007].

All of these extensions aim to raise the level of abstraction in specifica-
tions, by translation into basic attribute grammars or by using an extended
evaluator. Unfortunately, each of these extensions has been designed and im-
plemented separately and is hardwired into a particular attribute grammar
system. Potential users may find that a particular system does not provide
the set of demanded extensions. Adding new abstractions is non-trivial, since
it requires modification of the attribute evaluation system itself. For example,
it can sometimes be useful to thread attribute values from right-to-left (e.g.,
when computing backward slices or use-def relations between variables). In
a system with only left-to-right chained attributes, this dependence must be
encoded using basic attribute equations, despite the similarity of the abstrac-
tions.

In his OOPSLA’98 invited talk, “Growing a Language” [Steele, 1999], Guy
Steele argued that “languages need to put the tools for language growth in
the hands of the users,” providing high-level language features that abstract
over various extensions, rather than directly providing language features to
solve specific problems. To this effect, we propose attribute decorators as a
solution for the extensibility problem of attribute grammar specification lan-
guages. A decorator is a generic declarative description of the tree traversal
or evaluation mechanism used to determine the value of an attribute. Dec-
orators augment basic attribute equations with additional behavior, and can
provide non-local dependencies or a form of search as required. For instance,
a decorator can specify that the value of an attribute is to be sought at the
parent node (and recursively higher in the tree) if it is not defined at the cur-
rent node. Decorators can also enhance the usability of attribute equations
for specific domains, separating the generic behavior from specific equations
such as type checker constraints or data-flow equations, supported in other
systems through specialized extensions.

In this chapter, we present Aster, a system for decorated attribute grammars.
Decorators are sufficiently powerful to specify all of the attribute grammar
extensions listed above, avoiding the need to hardwire these into the system.
A library of decorators suffices to cover common cases, while user-defined,
domain-specific decorators can be used for specific applications and domains.

Decorators are inspired by strategic programming, where generic traversal
strategies enable a separation between basic rewrite rules defining a tree trans-
formation and the way in which they are applied to a tree [Visser et al., 1998;
Lämmel et al., 2003]. In our case, local attribute equations define the core
values of a tree computation, while decorators describe how those values are

110

combined across the tree structure. The Aster specification language is built
as an extension of the Stratego strategic programming language [Bravenboer
et al., 2008]. We reuse the generic traversal operators of Stratego for the spec-
ification of decorators, and its pattern matching and building operations as
the basis for attribute equations.

The contributions of this chapter are as follows.

• The decorated attribute grammars programming paradigm, using deco-
rators for application-level extensibility of attribute grammars.

• The identification of primitives for the specification of decorators to de-
fine abstract evaluation strategies for attributes.

• The implementation of Aster, a decorated attribute grammar system.1

• A collection of decorators for functionality provided by existing AG ex-
tensions and new abstractions specific to name, type, and flow analyses.

Outline We begin this chapter with background on attribute grammars and
introducing our basic notations. Section 5.3 defines decorators, showing how
they augment basic equations and capture common patterns. In Section 5.4 we
present typical language engineering applications, demonstrating how deco-
rators can be effectively applied in this area. In Section 5.5, we study the
application of Aster to a tool for grammar analyses and transformations. We
briefly outline our implementation in Section 5.6. In this extended version
of the original paper [Kats et al., 2009c], Section 5.4.4 elaborates on data-flow
analysis and circular attribute evaluation.

5.2 AT T R I B U T E G R A M M A R S

As they were originally conceived, attribute grammars (AGs) specify depen-
dencies between attributes of adjacent tree nodes [Knuth, 1968]. Attributes
are generally associated with context-free grammar productions. For exam-
ple, consider a production X ::= Y Z. Attribute equations for this production
can define attributes for symbols X, Y and Z. Attributes of X defined at this
production are called synthesized, as they are defined in the context of X. They
can be used to pass information upwards. Conversely, attributes of Y and Z

defined in this context can be used to pass information downwards, and are
called inherited attributes.

5.2.1 Pattern-Based Attribute Grammars

In this chapter we adopt a notational variation on traditional AGs in which at-
tribute equations are associated with tree or term patterns instead of grammar
productions [Farnum, 1992; Boyland and Graham, 1994]. Trees can be denoted
with prefix constructor terms such as Root(Fork(Leaf(1), Leaf(2))). Tree

1Available from http://strategoxt.org/Stratego/Aster/, and provided as part of
Spoofax at http://spoofax.org.

Chapter 5. Decorated Attribute Grammars 111

http://strategoxt.org/Stratego/Aster/
http://spoofax.org

1 eq Root(t):
2 t.global-min := t.min
3 id.min := t.min
4 id.replace := Root(t.replace)

5 eq Fork(t1,t2):
6 t1.global-min := id.global-min
7 t2.global-min := id.global-min
8 id.min := <min> (t1.min, t2.min)
9 id.replace := Fork(t1.replace, t2.replace)

10 eq Leaf(v):
11 id.min := v
12 id.replace := Leaf(id.global-min)

Figure 5.1 An attribute grammar specification for repmin in pattern major form.

1 eq min:
2 Root(t) → t.min
3 Fork(t1,t2) → <min> (t1.min, t2.min)
4 Leaf(v) → v

5 eq global-min:
6 Root(t). t → id.min
7 Fork(t1,t2). t1 → id.global-min
8 Fork(t1,t2). t2 → id.global-min

9 eq replace:
10 Root(t) → Root(t.replace)
11 Fork(t1,t2) → Fork(t1.replace, t2.replace)
12 Leaf(v) → Leaf(id.global-min)

Figure 5.2 An attribute grammar specification for repmin in attribute major form.

patterns for matching and construction are terms with variables (indicated in
italics throughout this chapter), e.g. Fork(t1,t2).

Basic attribute equations have the form

eq p: r.a := v

and define equations for a term that matches pattern p, where attribute a with
a relation r to the pattern has value v. The relation r can be a subterm of p
indicated by a variable or the term matched by the pattern itself, indicated by
the keyword id. An equation for a pattern p can include multiple attribute
relation definitions of the form r.a := v.

As an example, consider the transformation known as Bird’s repmin prob-
lem [Bird, 1984], which can be well expressed as an AG, as illustrated in
Figure 5.1. In this transformation, a binary tree with integer values in its
leaves is taken as the input, and a new tree with the same structure and
its leaves replaced with the minimum leaf value is produced as the out-
put. For example, the tree Root(Fork(Leaf(1),Leaf(2))) is transformed
to Root(Fork(Leaf(1),Leaf(1))).

In the specification of Figure 5.1, the local minimum leaf value in a sub-
tree is computed in the synthesized attribute min (lines 3, 8 and 11). At the
top of the tree, the minimum for the whole tree is copied to the inherited
global-min attribute (line 2), which is then copied down the tree to the leaves

112

(lines 6 and 7). Finally, the replace attribute constructs a tree where each leaf
value is replaced by the global minimum (lines 4, 9, 12).

Attribute equations are often defined in sets that share a common pattern,
but may also be grouped to define a common attribute, which can make it
easier to show the flow of information at a glance. Consider Figure 5.2, which
is equivalent to the specification in Figure 5.1, but organizes the equations
per attribute instead. Equations can be defined in separate modules, across
different files, and are automatically assembled into a complete specification.
Thus, language definitions can be factored per language construct and/or
per attribute to support modular, extensible language definitions [Hedin and
Magnusson, 2003; Van Wyk et al., 2006].

Using patterns helps separation of concerns when specifying a syntax and
AG analyses. However, it can still be useful to use the concrete syntax of a
language. Aster supports this using the generic approach of concrete object
syntax embedding as described in [Visser, 2002]. For example, instead of a
pattern While(e,s), we can use a concrete syntax pattern, which is typically
enclosed in “semantic braces”:

eq |[while (e) s]|:
id.condition = e

Concrete syntax patterns are parsed at compile-time, and converted to their
abstract syntax equivalents. Section 5.4 includes further examples of this tech-
nique.

5.2.2 Copy Rules

In theory, basic attribute equations with local dependencies are sufficient to
specify all non-local dependencies. Non-local dependencies can be encoded
by passing context information around using local inherited and synthesized
attributes. In the repmin example, this pattern can be seen in the definition
of the global minimum value, which is defined in the root of the tree. This
information is passed down by means of so-called copy rules, equations whose
only purpose is to copy a value from one node to another.

To accommodate for the oft-occurring pattern of copying values through
the tree, many AG systems provide a way to broadcast values, eliminating
the need for tedious and potentially error-prone specification of copy rules
by hand. For example, the repmin example can be simplified using the
including construct of the GAG and LIGA systems [Kastens and Waite,
1994], which provide a shorthand for specifying copy rules. Using this con-
struct, the copy rules in Figure 5.1, lines 6 and 7 could be removed and line
12 replaced by id.replace := Leaf(including Root.global-min), speci-
fying that the value is to be copied downward from the Root node.

5.3 D E C O R AT O R S

While constructs such as including provide notational advantages for some
specifications, they cannot be used if the desired pattern of attribution does

Chapter 5. Decorated Attribute Grammars 113

def down global-min
def up min
def rewrite-bu replace

eq Root(t):
t.global-min := id.min

eq Fork(t1,t2):
id.min := <min> (t1.min, t2.min)

eq Leaf(v):
id.min := v
id.replace := Leaf(id.global-min)

Figure 5.3 Repmin using decorators.

not precisely fit their definition. These notations are built into AG systems,
and as such a developer is faced with an all-or-nothing situation: use a nice
abstract notation if it fits exactly or fall back to writing verbose copy rules if
there is no suitable shorthand. This section proposes attribute decorators as
a more flexible alternative to building these shorthand abstractions into the
AG system. Decorators can be defined to specify how attribute values are to
be propagated through the tree. Common patterns such as including can be
provided in a decorator library, while user-defined decorators can be written
for other cases.

To define high-level attribute propagation patterns, we draw inspiration
from strategic programming [Visser et al., 1998; Lämmel et al., 2003]. This
technique allows the specification of traversal patterns in a generic fashion,
independent of the structure of a particular tree, using a number of basic,
generic traversal operations.

5.3.1 Basic Attribute Propagation Operations

Consider the specification of Figure 5.3. It specifies only the principal rep-
min equations, avoiding the copy rules. The flow of information is instead
specified using decorators (at the top of the specification). For instance,
global-min uses the down decorator, which specifies that values should be
copied downwards. Before we elaborate on the decorators used in this ex-
ample, let us first examine the unabbreviated set of equations and reduce
them to a more generic form that uses elementary propagation operations.
After this, we will show how these operations can be used in the specification
of decorators.

Downward propagation of the global-min attribute, first defined at the
root of the tree (as seen in Figure 5.3), was originally achieved by

eq Fork(t1,t2):
t1.global-min := id.global-min
t2.global-min := id.global-min

Another reading of this specification says that ‘the global-min of any non-
root term is the global-min of its parent.’ Thus, if we can reflect over the tree
structure to obtain the parent of a node, we can express this propagation as

114

eq Fork(t1,t2):
id.global-min := id.parent.global-min

eq Leaf(v):
id.global-min := id.parent.global-min

This notation makes the relation to the parent node’s attribute value explicit,
rather than being than implied by the context. It forms the basis of specifying
the downward propagation in a more generic way: id.parent.global-min

could be used as the default definition of global-min, used for nodes where
no other definition is given (here, all non-root nodes). This is essentially what
the down decorator in Figure 5.3 does.

A different form of propagation of values was used in the replace attri-
bute:

eq replace:
Root(t) → Root(t.replace)
Fork(t1,t2) → Fork(t1.replace, t2.replace)

Here we can recognize a (common) rewriting pattern where the node names
remain unchanged and all children are replaced. We abstract over this using
the all operator:

eq replace:
Root(t) → all(id.replace)
Fork(t1,t2) → all(id.replace)

all is one of the canonical generic traversal operators of strategic programming
[Visser et al., 1998; Lämmel et al., 2003]. It applies a function to all children of a
term. Other generic traversal operators include one, which applies a function
to exactly one child, and some, which applies it to one or more children. In
this case, we pass all a reference to the replace attribute. This reveals an
essential property of attribute references in Aster: they are first-class citizens
that can be passed as the argument of a function in the form of a closure.
The expression id.replace is a shorthand for a closure of the form λt →
(t.replace). It can be applied to the current term in the context of an attribute
equation or in a sequence of operations, or to a term t using the notation < f> t.

5.3.2 Attribute Propagation using Decorators

We implement attribute definitions using functions that map terms to values.
Parts of such a function are defined by attribute equations. Some attribute
definitions form only a partial function, such as those in Figure 5.3. In that
figure, copy rules are implicitly provided using decorators. Decorators are
essentially higher-order functions: they are a special class of attributes that
take another attribute definition (i.e., function) as their argument, forming
a new definition with added functionality. This means that the declaration
def down global-min and the accompanying equations for the global-min

attribute effectively correspond to a direct (function) call to decorator down:

eq Root(t):
t.global-min := id.down(the original global-min equations)

Chapter 5. Decorated Attribute Grammars 115

decorator down(a) =
(1) if a.defined then
(2) a

else
(3) id.parent.down(a)

end

decorator up(a) =
if a.defined then

a
else

id.child(id.up(a))
end

decorator rewrite-bu(a) =
all(id.rewrite-bu(a))

; if a.defined then
a

end

decorator down at-root(a) =
if not(id.parent) then

a
else
fail

end

Figure 5.4 Basic decorator definitions.

A basic decorator d decorating an attribute a is specified as follows:
decorator d(a) = s

The body s of a decorator is its evaluation strategy, based on the Stratego
language [Bravenboer et al., 2008]. It provides standard conditional and se-
quencing operations. Using generic traversal operators, the evaluation strategy
can inspect the current subtree. These operators are agnostic of the particular
syntax used, making decorator definitions reusable for different languages. In
this chapter, we introduce the notion of parent references as an additional ge-
neric traversal operator, in the form of the parent attribute. Furthermore, we
provide a number of generic tree access attributes that are defined using these
primitives, such as the prev-sibling and next-sibling attributes to get a
node’s siblings, and child(c) that gets the first child where a condition c ap-
plies. Finally, we introduce reflective attributes that provide information about
the attribute being decorated. These include the defined attribute, to test if
an attribute equation is defined for a given term, and the name and signature

attributes to retrieve the attribute’s name and signature.

To illustrate these operations, consider the definition of the down decorator,
which defines downward propagation of values in the tree (see Figure 5.4).
This decorator automatically copies values downwards if there is no attribute
equation defined for a given node. It checks for this condition by means of
the defined reflective attribute (1). In case there is a matching equation, it is
simply evaluated (2). Otherwise, the decorator acts as a copy rule: it “copies”
the value of the parent. For this it recursively continues evaluation at the
parent node (3). Conversely, the up decorator provides upward propagation
of values. If there is no definition for a particular node, it inspects the child
nodes, eventually returning the first successful value of a descendant node’s
attribute equation.

The rewrite-bu decorator provides bottom-up rewriting of trees, as we did
with the replace attribute. Using the all operator, it recursively applies all
defined equations for an attribute, starting at the bottom of the tree. Rewrites
of this type produce a new tree from an attribute, which in turn has attributes
of its own, potentially allowing for staged or repeated rewrites.

116

Program ::= Function*
Function ::= function ID(Arg*) { Stm* }
Stm ::= { Stm* }

| if (Expr) Stm else Stm
| while (Expr) Stm
| var ID : Type | ID := Expr
| return Expr

Type ::= IntType | ...
IntType ::= int
Arg ::= ID : Type
Expr ::= Int | Var | ID(Expr*) | Expr + Expr | Expr * Expr
Int ::= INT
Var ::= ID

Figure 5.5 The “while” language used in our examples.

In the next section we provide some examples of more advanced decora-
tors. At their most elaborate, these may specify a pattern p, can be parameter-
ized with functions a∗ and values v∗, and may themselves be decorated (d∗):

decorator d∗ [p .] name (d [, a∗] [| v∗]) = s

Note in particular the vertical bar ‘|’, used to distinguish function and value
arguments; in a call f(|x), x is a value argument, in a call f(x) it is a func-
tion. The same convention, based on the Stratego notation, is supported for
attributes. Furthermore, note that decorators can import other decorators d∗.
Such decorators are said to be stacked, and provide opportunity for reuse. To
illustrate this, consider the at-root decorator of Figure 5.4. It evaluates at-
tribute equations at the root of a tree, where the current node has no parent.
Using the down decorator, the result is propagated downwards. Effectively,
applying this stacked decorator results in a function application of the form
id.down(id.at-root(a)). Stacking can also be achieved by declaring mul-
tiple decorators for an attribute. For example, we can add a “tracing” dec-
orator to the global-min attribute, logging all nodes traversed by the down

decorator:

def down trace global-min

5.4 A P P L I C AT I O N S

In this section we discuss a number of common idioms in AG specifications,
and show how attribute decorators can be used to encapsulate them. We fo-
cus on language processing, a common application area of AG systems. As
a running example we use a simple “while” language (see Figure 5.5). We
demonstrate different language analysis problems and how they can be dealt
with using high-level decorators that are agnostic of the object language. As
such, they are reusable for more sophisticated languages and other applica-
tions.

Chapter 5. Decorated Attribute Grammars 117

decorator node.collect-all(a) =
let results =

node.children.map(id.collect-all(a))
; concat
in if <a> node then // add to results

![<a> node | <results>]
else

results
end

end

Figure 5.6 The collect-all decorator.

5.4.1 Constraints and Error Reporting

A fundamental aspect of any language processing system is reporting errors
and warnings. We define these as declarative constraints using conditional
attribute equations. These equations specify a pattern and a conditional where
clause that further restricts the condition under which they successfully apply:

eq error:
|[while (e) s]| → "Condition must be of type Boolean"
where not(e.type ⇒ BoolType)

|[e1 + e2]| → "Operands must be of type Int"
where not(e1.type ⇒IntType; e2.type ⇒IntType)

Each equation produces a single error message string if the subexpression
types do not match IntType or BoolType. Rather than having them directly
construct a list, we can collect all messages using the collect-all decorator
(see Figure 5.6). It traverses the tree through recursion, producing a list of all
nodes where the attribute succeeds. Note that this decorator does not test for
definedness of the equations (using a.defined), but rather whether they can
be successfully applied. Using collect-all with the error attribute, we can
define a new errors attribute:

def collect-all errors :=
id.error

This notation both declares the decorators and a default equation body, which
refers to error.

To provide usable error messages, however, the error strings need further
context information. We can define a new, application-specific decorator to
add this information before they are collected, and use it to augment the
error attribute:

decorator add-error-context(a) =
<conc-strings> (a," at ",id.pp," in ",id.file,":",id.line)

def add-error-context error

With this addition, the errors attribute now lists all errors, including a pretty-
printed version of the offending construct (provided a pp attribute is defined),
and its location in the source code (given a file and line attribute).

118

5.4.2 Name and Type Analysis

Type analysis forms the basis of static error checking, and often also plays a
role in code generation, e.g. for overloading resolution. Types of expressions
typically depend on local operands, or are constant, making them well-suited
for attribute equations. Moreover, an AG specification of a type analysis is
highly modular, and may be defined across multiple files. Thus, let us proceed
by defining a type attribute for all expressions in our language to perform this
analysis:

eq type:
Int(i) → IntType
|[e1 + e2]| → IntType where e1.type⇒IntType()

; e2.type⇒IntType()
Var(v) → id.lookup-local(|v).type
|[f(args)]| → id.lookup-function(| f, args).type

Variable references and function calls require non-local name analysis to be
typed. This can be done using parameterized lookup attributes that given a
name (and any arguments), look up a declaration in the current scope [Hedin,
2000]. In the example we reference the local type attribute of the retrieved
node, but lookup attributes can be used to access arbitrary non-local attributes
for use in various aspects of the system. The actual lookup mechanism is
provided by means of reusable decorators: to do this for a particular language,
it suffices to select an appropriate decorator and define the declaration sites
and scoping constructs of the language. Our lookup attributes are defined as
follows:

def lookup-ordered(id.is-scope) lookup-local(x) :=
id.decl(|x)

def lookup-unordered(id.is-scope) lookup-function(|x, args) :=
id.decl(|x, args)

Figure 5.7 shows the prerequisite decl and is-scope attribute definitions
for the name analysis, specified as arguments of the above attributes. Again,
these are highly declarative and each address a single aspect. Declaration sites
are identified by the decl attribute, which is parameterized with an identifier
name x and optionally a list of arguments. It only succeeds for matching dec-
larations. All declarations also define a type attribute. Similarly, the is-scope
attribute is used to identify scoping structures. Note in particular the equa-
tions of the “if” construct, which, for the purpose of this example, defines
scopes for both arms, similar to try/catch in other languages.

Languages employ varying styles of scoping rules. In our language we have
two kinds of scoping rules: C-like, ordered scoping rules, and Algol-like, un-
ordered scoping rules. In many languages, local variables typically use the for-
mer, while functions typically use the latter. We define the lookup-ordered

and lookup-unordered decorators to accommodate for these styles (see Fig-
ure 5.8). They traverse up the tree, inheriting the behavior of the down dec-
orator, thus giving precedence to innermost scopes. Along this path, the
lookup-ordered decorator visits the current node (1). If no declaration is
found there (i.e., fetch-decl fails), the <+ combinator specifies that it should

Chapter 5. Decorated Attribute Grammars 119

eq |[var x : t]|:
id.type := t
id.decl(|x) := id

eq |[x : t]|: // function parameters
id.type := t
id.decl(|x) := id

eq |[function f(params) : t stm]|:
id.type := t
id.decl(| f, args) := id where params.map(id.type).eq(|args.map(id.type))

eq is-scope:
|[function f(params) : t { stm∗ }]| → id
|[if (e) s1 else s2]|. s1 → s1
|[if (e) s1 else s2]|. s2 → s2
|[while (e) s]| → id
|[{ s∗ }]| → id

Figure 5.7 Attributes for name analysis and types of declarations.

decorator down lookup-ordered(f etch-decl, is-scope) =
(1) f etch-decl
(2) <+ id.prev-sibling(lookup-outside-scopes(f etch-decl, is-scope))

decorator down lookup-unordered(f etch-decl, is-scope) =
(id.is-root <+ is-scope) // only look in scoping structures

(4) ; lookup-in-scope(f etch-decl, is-scope)

lookup-in-scope(f etch-decl, is-scope) =
f etch-decl
<+ id.child(lookup-outside-scopes(f etch-decl, is-scope)) // enter scope

lookup-outside-scopes(f etch-decl, is-scope) =
f etch-decl

(3) <+ not(is-scope) // do not enter scope subtrees
; id.child(lookup-outside-scopes(f etch-decl, is-scope))

Figure 5.8 Lookup attributes and decorators.

proceed at (2), visiting any preceding siblings using the lookup-outside-

scopes helper function. This function performs a local lookup for decla-
rations in these nodes, respecting the scoping rules by avoiding traversal of
scoping constructs (3). In contrast, lookup-unordered follows a straight path
to the root of the tree, doing a search in encountered scopes (4).

5.4.3 Control-flow Analysis

Control-flow analysis forms the foundation of data-flow analysis, which is
prerequisite to various compiler optimizations, refactorings, and static checks
for bug patterns or security violations. A recent paper by Nilsson-Nyman
et al. [2008] demonstrated how AGs can be employed for modularly spec-
ifying such analyses, ensuring separation of concerns and reusability with
different data-flow analyses.

We take an approach similar to that of the JastAdd project, using reference
attributes [Hedin, 2000] to declaratively define the control flow graph. Con-
sider Figure 5.9, which defines a succ attribute, providing a reference to all

120

def down succ-enclosing:
Program(_) → []

(2) [s1 , s2 | _]. s1 → [s2]
(3) |[while (e) s]|.s → [id]

(4)def default(id.succ-enclosing) succ:
|[{ s; s∗ }]| → [s]

(1) |[if (e) s1 else s2]| → [s1 , s2]
|[return e]| → []
|[while (e) s]| → [s | s.succ-enclosing]

(5)decorator default(a, de f ault) =
if a then

a
else

de f ault
end

Figure 5.9 Specification of the control flow.

def contributes-to(id.succ) stm:
id.pred := stm

Figure 5.10 Specification of the reverse control flow.

successors of a statement. For instance, for the “if” statement, the successors
are the “then” and “else” branches (1). A helper attribute, succ-enclosing,
determines the default successors based on the enclosing block. For sequences
of statements, the successor is the next statement in the sequence (2). The
“while” statement overrides this behavior, by setting the successor of the en-
closed block to itself (3). For any non-control flow statements, we specify
succ-enclosing as the default successor succ (4), using the default deco-
rator (5).

The specification of the succ attribute allows for a natural, declarative way
of specifying the forward control flow of a language. However, a number of
data-flow analyses depend on the predecessors of a statement. To avoid spec-
ifying these by hand, it is possible to use collection attributes [Boyland, 2005;
Magnusson et al., 2007; Boyland, 1996] to derive the reverse flow graph. Collec-
tion attributes introduce a “contributes to” clause, allowing nodes to contribute
values to collections in other nodes. Using this technique, we can define the
predecessor graph in a single equation, by contributing each statement to its
successors, as shown in Figure 5.10.

Figure 5.11 defines the contributes-to decorator. Note that for clarity, we
use fragments of pseudocode in lieu of more advanced Stratego constructs.
The complete, 20-line source is available from http://strategoxt.org/
Stratego/Aster/. This decorator operates in two phases: the first time
any collection attribute is evaluated, it enters the survey phase (1), where the
complete tree is traversed, adding all contributing nodes to a list maintained
for each node contributed to. This is done only once, rather than for ev-
ery collection attribute retrieved. After this phase completes (2), referenced
collections only require the application of any attribute equations associated
with it (for pred, stm is returned). Note that all required bookkeeping op-

Chapter 5. Decorated Attribute Grammars 121

http://strategoxt.org/Stratego/Aster/
http://strategoxt.org/Stratego/Aster/

decorator contributes-to(a, targets) =
if not(completed survey phase) then

(1) mark survey phase complete
; id.root
; in a top-down fashion:

for a node x, apply targets and add them to the list of
contributions for x

end
(2); apply a to the list of contributions for the current node

Figure 5.11 The contributes-to decorator, contributing values to a list of nodes.

erations (i.e., storing contributions and whether the survey phase completed)
are performed in the context of the current attribute: they are stored in ta-
bles associated with the attribute’s unique signature and its argument values
(i.e., id.signature).

5.4.4 Data-flow analysis

The control flow graph, specified by the succ and pred attributes, forms the
foundation of any data-flow analysis. As such a graph may have cycles in
it, data-flow analyses have the peculiar property that their equations may in-
volve circular dependencies. This makes them unsuitable for traditional AGs.
However, by extending the formalism with circular attributes [Magnusson and
Hedin, 2007; Boyland, 1996], it becomes possible to use declarative AG equa-
tions to specify such analyses [Nilsson-Nyman et al., 2008]. Circular attribute
equations can be solved by fixed point iteration, as long as their underlying
data forms a lattice. We implemented this in a decorator that evaluates circu-
lar attributes.

A typical data-flow analysis is that of reaching definitions, which forms the
basis for a constant propagation optimization. Its definition is as follows [Aho
et al., 2006]:

RDout(bi) = gen(bi) ∪ (RDin(bi)\kill(bi))
RDin(bi) =

⋃
x∈pred(bi)

RDout(x)

These equations define the “out” and “in” sets of definitions for each state-
ment bi, respectively defining all variable definitions that reach just after and
just before a statement. At the beginning of each statement, the definitions
that reach it are defined by the union of all reaching definitions of the prede-
cessor statements pred of Figure 5.9. The “out” set is maintained by means
of a so-called “gen” set and a “kill” set that indicate for each statement bi the
statements to be respectively added to it and removed from it. In our fol-
lowing example, we use these sets as a basis for the propagation of constant
definitions: statements may add or remove (i.e., invalidate) constant definitions.
For example, an assignment statement x := 3 adds a new constant definition
for variable x when it completes. Therefore, this definition is added to the
“out” set of the statement.

While there is an obvious correspondence between the equations above
and regular attribute equations, a typical characteristic of data-flow analyses

122

def circular(|[]) stm:
(1) id.constant-out :=

<id.table-union> (
id.constant-genset,
<id.table-diff> (id.constant-in, id.constant-killset)

)

(2) id.constant-in := <id.isect> id.pred.map(id.constant-out)

(3) def default(![]) |[var : t := e]|:
id.constant-genset := [(var, e.constant-value)]
id.constant-killset := [(var, ())] where not(e.constant-value)

(4) def constant-value:
Int(i) → i
Var(v) → id.constant-before.lookup(|v)
|[e1 * e2]| → <add> (e1.constant-value, e2.constant-value)
|[e1 + e2]| → <mul> (e1.constant-value, e2.constant-value)

Figure 5.12 Constant propagation.

is that their definition involves circular dependencies: the equations are defined
in terms of each other. Given a control flow graph that has cycles in it, a
traditional AG evaluator cannot solve these equations. Instead, an iterative
process is required. Nilsson-Nyman et al. [2008] recently demonstrated how
such equations can be naturally implemented for a liveness analysis in an
attribute grammar system, by extension with circular attributes [Magnusson
and Hedin, 2007; Boyland, 1996]. They implemented the extension itself in
Java, as part of the JastAdd evaluator [Magnusson and Hedin, 2007]. Another
AG system that supports data-flow analysis is Silver [Van Wyk et al., 2010].
However, rather than extending the AG evaluation system, it uses an external
model checking tool to perform the analysis [Van Wyk et al., 2007].

We provide a mechanism for circular attributes as part of the attribute
grammar specification (or a library) rather than its evaluation system, in the
form of the circular decorator. Instead of using the standard memoized
evaluation scheme for attributes (see Section 5.6), this decorator provides an
alternative evaluation strategy based on fixpoint iteration.

Consider Figure 5.12, which defines a constant propagation analysis us-
ing circular attributes and the circular decorator. In this definition, the
constant-out and constant-in equations (1, 2) correspond to the “out” and
“in” sets seen before. Note again the dependency between the two equations.
The circular decorator is declared for both attributes, where the empty list
[] is the initial value. The constants removed or added by each statement are
defined by the “gen set” and “kill set” definitions (3). These sets are empty
by default, but are specifically defined for assignments. In turn, these are
defined by use of the by the constant-value attribute (4), which provides
the constant value of an expression if one is currently available (or fails if an
expression is not constant).

Following the basic algorithm of Magnusson and Hedin [2007], the circu-

lar decorator we define here only allows a single fixpoint iteration to be active
at a time. Any circular attributes on nodes referenced during its iteration are

Chapter 5. Decorated Attribute Grammars 123

def plain node.circular(a|initial) =
(get-cache(|a.signature, node) <+ initial.init <+ !EVAL_FAILED())

; if ?FINISHED(value) + ?BUSY(value) then
(1) !value // currently finished or busy; return last value

else
(2) fixpoint(a|a.signature, node, id)

end
; not(EVAL_FAILED) // fail if failure placeholder encountered

fixpoint(a|signature, node, oldvalue) =
(3) recompute(|signature, node, oldvalue)
; if not(fixpoint is running) then

globally mark fixpoint running
(4) ; while marked changed:

clear old list of participants
; apply recompute, with the latest result as its oldvalue argument

; mark all participants FINISHED
; globally unmark fixpoint running
end

recompute(a|signature, node, oldvalue) =
(5) node := <put-cache(|signature, node, BUSY(oldvalue))>
; (s <+ !EVAL_FAILED()) // evaluate or use placeholder for failure
; if id.eq(|oldvalue) then

(6) register node as a participant
put-cache(|signature, node, oldvalue) // no longer BUSY

else
id.init

(7) ; put-cache(|cache, node, id)
(8) ; globally mark changed

end

get-cache(|table, key) = retrieve a value from the cache
put-cache(|table, key, value) = store a value in the cache

Figure 5.13 The circular attribute evaluation decorator.

said to be its participants. Once the iteration has reached a fixpoint, all par-
ticipants are marked FINISHED, and do not require a new fixpoint iteration.
In practice, this means that for an intraprocedural analysis, a single fixpoint
loop is performed per method. During the iterative process, any attribute en-
countered is marked BUSY, which indicates that it should not be recomputed
until the next step of the iteration is entered.

Consider Figure 5.13, which defines the circular decorator and a number
of helper functions. The main circular decorator determines how to evaluate
an attribute based on its current state: for attributes marked FINISHED or
BUSY, the current value is returned (1). If not (2), the circular-fixpoint

helper (re)computes the attribute equation value (3). It also starts a new
fixpoint iteration as required, which runs while any of the participants records
a change (4).

To recompute the value of equations, the recompute-circular-def helper
performs the required bookkeeping operations: any active equation is regis-
tered as BUSY (5), all participants of the iteration are added to a list (6), any
changes to values are recorded (7), and the newly computed value is stored
using the put-cache operation (8). Like for the contributes-to decorator
of Section 5.4.3, all bookkeeping operations are performed in the context of

124

the current attribute signature, with the exception of the global “fixpoint run-
ning” property.

Since the circular decorator evaluates equations multiple times, it is nec-
essary to disable the default memoization behavior of equations (outlined in
Section 5.6). We do this by importing the plain decorator, a built-in decorator
that indicates that this behavior must be disabled for the decorator and any
attributes that are transitively decorated by it. Thus, it forms the basis for at-
tributes equations that require a customized caching scheme. In the circular
decorator, we use the put-cache and get-cache helper functions to control
the standard caching operations. The plain decorator also disables automatic
term initialization, i.e., annotating a term with unique keys (see Section 5.6).
This allows us to do this in a more fine-grained fashion for this decorator,
using the init attribute to explicitly initialize result terms as necessary. In
the future, as we transition to an implementation that no longer uses these
annotations, this operation should no longer be required.

In this chapter we have shown how circular attributes can be implemented
as a reusable library or application component, using strategic programming
primitives to specify decorators, avoiding adaptation of the base AG system
itself. For a more elaborate discussion of the uses of and evaluation algorithms
behind circular attributes in general, we kindly refer the reader to [Magnusson
and Hedin, 2007] and [Boyland, 1996].

5.5 C A S E S T U D Y: G R A M M A R A N A LY S E S A N D
T R A N S F O R M AT I O N S

Beyond applications in typical attribute grammar idioms, we have applied
Aster for the derivation of parse error recovery rules from grammars. Chap-
ter 6 describes how these rules are constructed and the criteria by which they
are selected. In this section we describe our experience with the construction
of the make-permissive tool that performs the derivation, and its design and
implementation.

The make-permissive tool is a batch processor tool that takes a given
grammar, analyzes it, and generates a new grammar that includes derived
recovery rules. The tool has a total of 544 SLOC spread over eight modules:2

• make-permissive: The main module, handling I/O, control, and com-
mand-line options (155 SLOC).

• sdf-analysis: Equations for constructing a graph-based model and ana-
lyzing SDF definitions (76 SLOC).

• sdf-injections: Equations for reasoning over injections based on the graph-
based model (20).

• sdf-heuristics: Heuristic analyses over the graph-based model and injec-
tion analysis (48 SLOC).

2The full source code and example outputs are available from http://strategoxt.org/
Stratego/PermissiveGrammars.

Chapter 5. Decorated Attribute Grammars 125

http://strategoxt.org/Stratego/PermissiveGrammars
http://strategoxt.org/Stratego/PermissiveGrammars

• water-sections: Equations for generating “water” recovery rules (Sec-
tion 6.4.2) based on conditions that use the analyses above (28 SLOC)

• insert-sections: Equations for generating “insertion” recovery rules (Sec-
tion 6.4.3) based on conditions that use the analyses above (191 SLOC).

• optimize: Optimizes the resulting grammar (20 SLOC).

• pp-commented-sdf : Handles output of SDF modules with comments
about the recovery rules (8 SLOC).

In these modules, we define a total of 43 attributes consisting of 64 equa-
tions. Out of the 43 attributes, 30 use decorators in their definition. The
analysis performed by the tool corresponds to one as seen in many compil-
ers or optimizers, and uses a number of the decorators shown in this paper,
demonstrating their applicability for building such a tool.

The tool uses the name analysis decorators of Section 5.4.2 (in 2 attributes)
to analyze the name bindings in SDF. The contributes-to decorator of Sec-
tion 5.4.3 is used (in 1 attribute) to collect references from productions to other
productions. The collect-all decorator of Section 5.4.1 (used in 3 attributes)
and the down decorator of Section 5.3 (used in 9 attributes) are used for col-
lecting and distributing various sorts of information. In addition, the tool
uses decorators for assertions, to control caching behavior. and to define a
single new decorator for analyses on the graph structure formed by grammar
productions.

An interesting observation that can be made about the make-permissive

tool is that its ratio of equations to attributes is rather low. An explanation may
be that the equations manage by exception, and that the decorators specify
their general strategy.

The make-permissive tool is part of the standard Spoofax distribution of
Chapter 4. It is compiled using the Java version of Stratego of Chapter 3, and
distributed in the form of a 497 KB jar file that inlines the Aster runtime and
standard library. Even for large grammars, such as the testing language of
Chapter 8, which embeds the Stratego language, it can generate an output
grammar in less than 3 seconds on a 2.8 Ghz Intel Core 2 Duo laptop.

5.6 I M P L E M E N TAT I O N

The Aster language is built as an extension of the Stratego strategic program-
ming language [Bravenboer et al., 2008], which natively supports the canonical
generic traversal operators. The Aster compiler is implemented in standard
Stratego, using only a (bootstrapped) AG specification for error reporting (us-
ing constraint rules similar to those in Section 5.4.1). It compiles AG specifi-
cations to regular Stratego programs through a series of normalization steps.
The normalization process starts by grouping attribute equations together,

126

forming separate strategies for each attribute and decorator. As illustrated in
Section 5.3.2, attribute equations and decorators are implemented as functions
with generic traversal operations (called strategies in strategic programming).
Inherited attributes are defined at the parent of a node; therefore, their im-
plementation uses the parent primitive. Attribute references and imported
decorators are converted to strategy calls. For decorator calls, static reflective
data is added for reflective attributes such as signature. Finally, a mem-
oization mechanism is added to cache all attribute and decorator calls. We
elaborate on these normalization steps in the technical report that accompa-
nies this chapter [Kats et al., 2008b].

Using memoization, attributes are evaluated at most once, thus achieving
optimal evaluation. Similar memoization-based dynamic evaluation has been
used before in many other systems, e.g. by Jalili [1983] and recently in Jast-
Add [Hedin and Magnusson, 2003]. In Aster, memoization can be selectively
disabled and overridden with custom behavior using decorators. For exam-
ple, we disable it for the data-flow analysis of Section 5.4.4.

5.6.1 Performance

Our current, experimental implementation has not been tuned for perfor-
mance. One constraining factor is currently the ATerm library used to rep-
resent trees, which forms an integral part of Stratego. It is optimized for a
maximally shared representation of terms, where identical subtrees occupy
the same space in memory [van den Brand et al., 2000]. This makes it less
suitable for storing additional, dynamic information in tree nodes, in our case
parent references (for id.parent) and memoized attribute values. We worked
around this by annotating tree nodes with unique keys, and use these to store
the added information in separate tables. In the future, we would like to
adapt or replace the underlying implementation to better accommodate for
this. Regardless, preliminary performance measurements indicate promising
results.

We compared our compiler against JastAdd [Hedin and Magnusson, 2003],
a mature AG system that uses an evaluation mechanism conceptually very
similar to our own. We used the repmin program of Figure 5.1 as a test case
and compared it against the repmin program of http://jastadd.org/.
Over an average of fifty runs, JastAdd took 51 ms to replace all leaves in a
large tree with 216 leaves. Our system took 150 ms, or 180 ms for the version
of Figure 5.3 where decorators are used in place of manual copy rules. Fur-
ther testing confirms an unfortunate, but constant overhead of about a factor
three in the base performance level, due to the expensive memoization and
term initialization operations. Still, the results indicate a low overhead of the
decorator mechanism. Furthermore, both our specifications, especially when
using decorators, are more concise than the version implemented in JastAdd.
Where the JastAdd specification uses 21 SLOC, ours use respectively 15 and
8 SLOC, including abstract syntax and attribute declarations.

Chapter 5. Decorated Attribute Grammars 127

http://jastadd.org/

5.7 R E L AT E D W O R K

The general principle behind attribute decorators shares similarities with the
Decorator design pattern, which describes how to add functionality to objects
at run-time [Gamma et al., 1995]. Variations of this idea exist in languages
such as Python, which features decorators for functions [van Rossum, 2000].
In our case, we augment basic attribute definitions with either propagation
of values from other nodes or with higher-level behavior such as a circular
evaluation scheme. This kind of augmentation is similar to code weaving
used in many forms of aspect-oriented programming [Kiczales et al., 1997].

Although considerable research has been devoted to various special-pur-
pose extensions of AGs (as illustrated in the preceding sections), rather less at-
tention has been paid to extensibility of AG systems. Two systems that do aim
at different degrees of extensibility are first-class attribute grammars [de Moor
et al., 2000; Viera et al., 2009] and Silver [Van Wyk et al., 2010].

In first-class AGs, attribute equations are first-class citizens, allowing them
to be combined and manipulated using the language itself. Using function
combinators, basic up, down, and chain copy rules can be defined [de Moor
et al., 2000; Viera et al., 2009]. These combinators show similarities with deco-
rators, although they are purely defined in terms of functional dependencies,
and lack the reflective and traversal primitives that form the building blocks
of decorators. The paper does not indicate that they could be used to im-
plement more sophisticated forms of propagation and manipulation of equa-
tions, such as the collection and circularity decorators. Based on the Haskell
type checker, first-class AGs prevent errors where the use of an attribute does
not match its type. Errors due to cyclic dependencies or a mismatch between
attribute equations and grammar productions are not reported. Our system
is based on Stratego, which is largely untyped (but could be typed [Lämmel,
2003]). Further complicated by the use of parent node references, it currently
does not provide a fully typed system, other than basic static pattern cover-
age checking. In practical Aster programs, such as the make-permissive tool
of Section 5.5, we selectively use type assertions (in the form of decorators)
that are dynamically checked to alleviate this limitation.

Silver supports extension with automatic copy rules as well as more ad-
vanced features such as collection attributes in a relatively accessible man-
ner [Van Wyk et al., 2010]. Implemented in itself, the Silver language can be
used to modularly implement such extensions. While adding extensions of
this kind is made easier through facilities such as forwarding for local trans-
formations [Van Wyk et al., 2002] and higher-order attributes, it is hard to
imagine a regular Silver user building such an extension. Moreover, it is diffi-
cult to encapsulate these extensions in a single application or library, as they
must be integrated in the base AG system. In contrast, many decorators are
light-weight so they can be developed quickly and easily as needed.

A system that particularly inspired our design has been JastAdd [Hedin
and Magnusson, 2003], which extends traditional AGs in a number of interest-

128

ing ways.3 JastAdd uses reference attributes [Hedin, 2000], which we also use
in a number of decorators. Its extensions include collection attributes [Mag-
nusson et al., 2007] and circular computations [Magnusson and Hedin, 2007].
These are built into the JastAdd implementation; there is no user-level mech-
anism to define similar extensions. As demonstrated in Section 5.4, decorators
can be used to define these same features at a higher level. Admittedly, we
would not expect users to define relatively complex features like this very of-
ten, but building on the high-level framework provided by decorators is likely
to be much easier than modifying the underlying implementation of an AG
evaluation system. JastAdd is designed to be used in conjunction with hand-
written code, particularly using visitors. As such, it provides a way to write
traversals that interoperate with declarative attribution. In theory, this facility
could be used to implement something similar to decorators, but this would
require the addition of generic traversal on top of the Java implementation of
trees, essentially duplicating the Stratego platform we use.

In related work, we introduced the Kiama system [Sloane et al., 2009],
based on the Scala language. Kiama takes a pure embedding approach [Hu-
dak, 1998] to its implementation, and is written as a Scala library. Based on the
Scala language, it provides part of the flexibility of Aster by providing func-
tional abstractions for copy rules and circular attributes. However, it lacks the
notion of decorators or the full set of primitives used to specify decorators.

5.8 C O N C L U S I O N S A N D F U T U R E W O R K

We propose decorated attribute grammars as a formalism for application-
level extensibility of AG systems. To this end, we have identified primitives
for the specification of decorators to define abstract evaluation strategies for
attributes. By means of a prototype implementation and by employing dec-
orators in different language engineering applications, we demonstrated the
feasibility of using decorators to implement common abstractions over basic
attribute grammars. These can be provided in the form of a library, and may
be extended with user-defined decorators, where decorator stacking can be
applied to reuse existing definitions.

In the future, we would like to explore further applications of decorated
attribute grammars, in particular in the domain of implementing domain-
specific languages and modular language extensions. For this we want to
build upon the rewriting capabilities of the Stratego transformation language,
the foundation of Aster. As such, we aim to take the best of both worlds;
rewriting with Stratego and declarative analysis with attribute grammars.

Another direction for Aster is full integration with Spoofax. Aster is cur-
rently distributed as part of Spoofax, and can be used to define analyses for
Spoofax language plugins, but additional experience is needed to identify pat-
terns for specifying editor services and complete languages with Aster. In the
future we would particularly like to explore decorators that encapsulate logic

3For the purposes of this chapter, we focus on the attribute grammar features of JastAdd,
ignoring its support for rewriting trees during evaluation [Ekman and Hedin, 2004].

Chapter 5. Decorated Attribute Grammars 129

for typical editor service components, incremental compilation concerns, and
related aspects.

Acknowledgments This research was supported by NWO projects 638.001.610,
MoDSE: Model-Driven Software Evolution, 612.063.512, TFA: Transformations for
Abstractions, and 040.11.001, Combining Attribute Grammars and Term Rewrit-
ing for Programming Abstractions. We would like to thank Nicolas Pierron for
the discussions on attribute grammar systems and their implementation. We
thank the anonymous reviewers of CC 2009 for providing useful feedback on
an earlier version of this chapter.

130

6
Error Recovery for Generated Modular
Language Environments

A B S T R A C T

Integrated development environments (IDEs) increase programmer produc-
tivity, providing rapid, interactive feedback based on the syntax and seman-
tics of a language. To support modular language definitions, language exten-
sions, and embedded languages, constituent IDE plugin modules and their
grammars can be composed. Unlike conventional parsing algorithms, scan-
nerless generalized-LR parsing supports the full set of context-free grammars,
which is closed under composition, and hence can parse languages composed
from separate grammar modules. To apply this algorithm in an interactive en-
vironment, this chapter introduces a novel error recovery mechanism, which
allows it to be used with files with syntax errors – common in interactive
editing. Our approach is language-independent, and relies on automatic der-
ivation of recovery rules from grammars. By taking layout information into
consideration it can efficiently suggest natural recovery suggestions. We eval-
uate the recovery quality and performance of our approach using a set of
composed languages, based on Java and Stratego.

6.1 I N T R O D U C T I O N

Integrated Development Environments (IDEs) increase programmer produc-
tivity by combining a rich toolset of generic language development tools with
services tailored for a specific language. These services provide a programmer
with rapid, interactive feedback based on the syntactic structure and seman-
tics of the language. High expectations with regard to IDE support place a
heavy burden on the shoulders of developers of new languages.

Parsing in IDEs One burden in particular for textual languages is the devel-
opment of a parser. The parser forms the foundation of all language-specific
editor services in an IDE. By parsing the source code text displayed in the ed-
itor, the parser constructs a structured representation in the form of abstract
syntax trees (ASTs). These are used for presentational editor services, such as
syntax highlighting, code folding, and outlining, and semantic editor services,
such as cross-referencing, checking for semantic errors, and code completion.

To provide rapid syntactic and semantic feedback, IDEs interactively parse
programs as they are edited. As the user edits a program, it is often in a
syntactically invalid state. Parse error recovery techniques can diagnose and
report parse errors, and can construct a valid AST for syntactically invalid

131

programs [Degano and Priami, 1995]. Thus, to successfully apply a parser in
an interactive setting, proper parse error recovery is essential.

The development costs of a complete parser with error recovery support
by hand are often prohibitive. Parser generators are an indispensable tool for
rapid language development. They automatically generate a working parser
from a grammar definition, significantly reducing the development time of the
parser and the turnaround time for changing the parser as a language design
evolves. A limitation of most parser generators is that they only support
certain subclasses of the context-free grammars, such as LL(k) grammars or
LR(k) grammars, reporting conflicts for grammars outside that grammar class.
Such restrictions on grammar classes make it harder to change grammars –
requiring refactoring – and prohibit the composition of grammars as only the
full class of context-free grammars is closed under composition [Bravenboer
and Visser, 2004].

Three important criteria for the effectiveness and applicability of parser
generators for use in IDEs are 1) the grammar classes they support, 2) the
performance guarantees they provide for those grammar classes, and 3) the
quality of the syntax error recovery support they provide. In this chapter we
show how all three can be achieved, by using a generalized parser that sup-
ports the complete set of context-free grammars with strict time complexity
guarantees1, and showing how to support error recovery in such a setting.

Error recovery for generalized parsers Generalized parsers such as generalized
LR support the full class of context-free grammars, which is closed under
composition. By using scannerless GLR (SGLR) [Visser, 1997b], even scanner-
level composition problems such as reserved keywords are avoided. Parse
error recovery for generalized parsers such as SGLR has been a long-standing
open issue.

Challenges The scannerless, generalized nature of SGLR parsers poses chal-
lenges for the diagnosis and recovery of errors. We have identified two main
challenges. First, generalized parsing implies parsing multiple branches (rep-
resenting different interpretations of the input) in parallel. Syntax errors can
only be detected at the point where the last branch failed, which may not be
local to the actual root cause of an error, increasing the difficulty of diagnosis
and recovery. Second, scannerless parsing implies that there is no separate
scanner for tokenization and that errors cannot be reported in terms of tokens,
but only in terms of characters. This results in error messages about a single
erroneous character rather than an unexpected or missing token. Moreover,
common error recovery techniques based on token insertion and deletion are
ineffective when applied to characters, as many insertions or deletions are re-
quired to modify complete keywords, identifiers, or phrases. Together, these
two challenges make it harder to apply traditional error recovery approaches,
as scannerless and generalized parsing increases the search space for recov-

1Generalized LR [Tomita, 1988] parses deterministic grammars in linear time and gracefully
copes with non-determinism and ambiguity with a cubic worst-case complexity.

132

ery solutions and makes it harder to diagnose syntax errors and identify the
offending substring.

Approach overview In this chapter we address the above challenges by in-
troducing additional “recovery” production rules to grammars that make it
possible to parse syntax-incorrect inputs with added or missing substrings.
These rules are based on the principles of island grammars (Section 6.3). We
show how these rules can be specified and automatically derived (Section 6.4)
and used with minimal changes to the parsing algorithm (Section 6.5). Since
our recovery rules are normal parse production rules, the approach preserves
the generalized and scannerless capabilities of the parser and its worst-case
time complexity. We further use a layout-sensitive algorithm to select recovery
suggestions for scoping structures in languages (Section 6.6) and use layout
to constrain the search space for recovery rule applications (Section 6.7).

Contributions This chapter integrates and updates our work on error recov-
ery for scannerless, generalized parsing [Kats et al., 2009a; de Jonge et al.,
2009] and draws on our work on bridge parsing [Nilsson-Nyman et al., 2009].
We implemented our approach based on the modular syntax definition for-
malism SDF [Heering et al., 1989; Visser, 1997c] and JSGLR [Spoofax, 2011], a
Java-based implementation of the SGLR parsing algorithm. In addition, this
chapter introduces general techniques for the implementation of an IDE based
on a scannerless, generalized parser, and evaluates the recovery approach us-
ing automatic syntax error seeding to give a balanced selection and evaluation
of recovery techniques.

6.2 COMPOSITE LANGUAGES AND GENERALIZED PARSING

Composite languages integrate elements of different language components.
We distinguish two classes of composite languages: language extensions and
embedded languages. Language extensions extend a base language with new,
often domain-specific elements. Language embeddings combine two or more
existing languages, allowing one language to be nested in the other.

Examples of language extensions include the addition of traits [Ducasse
et al., 2006] or aspects [Kiczales et al., 1997, 2001] to object-oriented languages,
enhancing their support for adaptation and reuse of code. Other examples
include new versions of a language, introducing new features to an existing
language, such as Java’s enumerations and lambda expressions.

Examples of language embeddings include database query expressions in-
tegrated into an existing, general-purpose language such as Java. Such an em-
bedding both increases the expressiveness of the host language and facilitates
static checking of queries. Figure 6.1 illustrates such an embedding. Using a
special quotation construct, an SQL expression is embedded into Java. In turn,
the SQL expression includes an anti-quotation of a Java local variable. By sup-
porting the notion of quotations in the language, a compiler can distinguish
between the static query and the variable, allowing it to safeguard against in-
jection attacks. In contrast, when using only a basic Java API for SQL queries

Chapter 6. Error Recovery for Generated Modular Language Environments 133

public class Authentication {
public String getPasswordHash(String user) {

SQL stm = <| SELECT password FROM Users
WHERE name = ${user} |>;

return database.query(stm);
}

}

Figure 6.1 An extension of Java with SQL queries.

webdsl-action-to-java-method:
|[action x_action(farg*) { stat* }]| →
|[public void x_action(param*) { bstm* }]|
with param* := <map(action-arg-to-java)> farg*;

bstm* := <statements-to-java> stat*

Figure 6.2 Program transformation using embedded object language syntax.

constructed using strings, the programmer must take care to properly filter
any values provided by the user.

Language embeddings are sometimes applied in meta-programming for
quotation of their object language. Transformation languages such as Strat-
ego [Bravenboer et al., 2008] and ASF+SDF [van den Brand et al., 2002] allow
fragments of a language that undergoes transformation to be embedded in
the specification of rewrite rules. Figure 6.2 shows a Stratego rewrite rule that
rewrites a fragment of code from a domain-specific language to Java. The
rule uses meta-variables (written in italics) to match “action” constructs and
rewrites them to Java methods with a similar signature. SDF supports meta-
variables by reserving identifier names in the context of an embedded code
fragment.

Parsing Composite Languages The key to effective realization of composite
languages is a modular, reusable language description, which allows con-
stituent languages to be defined independently, and then composed to form a
whole.

A particularly difficult problem in composing language definitions is com-
position at the lexical level. Consider again Figure 6.2. In the embedded Java
language, void is a reserved keyword. For the enclosing Stratego language,
however, this name is a perfectly legal identifier. This difference in lexical syn-
tax is essential for a clean and safe composition of languages. It is undesirable
that the introduction of a new language embedding or extension invalidates
existing, valid programs.

The difficulty in combining languages with a different lexical syntax stems
from the traditional separation between scanning and parsing. The scanner
recognizes words either as keyword tokens or as identifiers, regardless of the
context. In the embedding of Java in Stratego this would imply that void be-
comes a reserved word in Stratego as well. Only using a carefully crafted lex-
ical analysis for the combined language, introducing considerable complexity
in the lexical states to be processed, can these differences be reconciled. Us-
ing scannerless parsing [Salomon and Cormack, 1989, 1995], these issues can

134

be elegantly addressed [Bravenboer et al., 2006a]. The Scannerless Generalized-
LR (SGLR) parsing algorithm [Visser, 1997b] realizes scannerless parsing by
incorporating the generalized-LR parsing algorithm [Tomita, 1988]. GLR sup-
ports the full class of context-free grammars, which is closed under composi-
tion, unlike subsets of the context-free grammars such as LL(k) or LR(k). In-
stead of rejecting grammars that give rise to shift/reduce and reduce/reduce
conflicts in an LR parse table, the GLR algorithm interprets these conflicts by
efficiently trying all possible parses of a string in parallel, thus supporting
grammars with ambiguities, or grammars that require more look-ahead than
incorporated in the parse table. Hence, the composition of independently de-
veloped grammars does not produce a grammar that is not supported by the
parser, as is frequently the case with LL or LR based parsers.

The syntax definition formalism SDF [Heering et al., 1989; Visser, 1997c]
integrates lexical syntax and context-free syntax supported by SGLR as the
parsing algorithm. Undesired ambiguities in SDF2 definitions can be resolved
using declarative disambiguation filters [van den Brand et al., 2002]. Implicit
disambiguation mechanisms such as ‘longest match’ are avoided. Other ap-
proaches, including PEGs [Ford, 2002], language inheritance in MontiCore
[Krahn et al., 2008], and the composite grammars of ANTLR [Parr and Fisher,
2011], implicitly disambiguate grammars by forcing an ordering on the alter-
natives of a production – the first (or last) definition overrides the others. En-
forcing explicit disambiguation allows undesired ambiguities to be detected,
and explicitly addressed by a developer. For non-trivial grammars, in partic-
ular composed, independently developed grammars, this characteristic is of
vital importance.

Non-determinism in grammars can negatively affect parser performance.
With traditional backtracking parsers, this would lead to exponential execu-
tion time, but with GLR the parser runs in cubic time in the worst case. GLR
also has the attractive property that it can parse the deterministic LR class
of grammars that it extends in linear time, while gracefully coping with any
ambiguities. While scannerless parsing tends to introduce additional non-
determinism, the implementation of parse filters during parsing rather than
as a pure post-parse filter eliminates most of this overhead [Visser, 1997a].

SDF has been used to define various composite languages, often based on
mainstream languages such as C/C++ [Waddington and Yao, 2007], PHP [Bra-
venboer et al., 2010], and Java [Bravenboer and Visser, 2004; Bravenboer et al.,
2006a]. The example grammar shown in Figure 6.3 extends Java with em-
bedded SQL queries. It imports both the Java and SQL grammars, adding
two new productions that integrate the two. In SDF, grammar productions
take the form p1...pn → s and specify that a sequence of strings matching
symbols p1 to pn matches the symbol s. The productions in this particular
grammar specify a quotation syntax for SQL queries in Java expressions, and
vice versa an anti-quotation syntax for Java expressions inside SQL query ex-
pressions. The productions are annotated with the {cons(name)} annotation,
which indicates the constructor name used to label these elements when an
abstract syntax tree is constructed.

Chapter 6. Error Recovery for Generated Modular Language Environments 135

module Java-SQL
imports

Java
SQL

exports context-free syntax
"<|" Query "|>" → Expr {cons("ToSQL")}
"${" Expr "}" → SqlExpr {cons("FromSQL")}

Figure 6.3 Syntax of Java with embedded SQL queries, adapted from [Bravenboer
et al., 2010].

6.3 I S L A N D G R A M M A R S

Island grammars [van Deursen and Kuipers, 1999; Moonen, 2001, 2002] com-
bine grammar production rules for the precise analysis of parts of a program
and selected language constructs with general rules for skipping over the re-
mainder of an input. Island grammars are commonly applied for reverse
engineering of legacy applications, for which no formal grammar may be
available, or for which many (vendor-specific) dialects exist [Moonen, 2001].
In this chapter we use island grammars as inspiration for error recovery using
additional production rules.

Using an island grammar, a parser can skip over any uninteresting bits of
a file (“water”), including syntactic errors or constructs found only in spe-
cific language dialects. A small set of declarative context-free production
rules specifies only the interesting bits (the “islands”) that are parsed ‘prop-
erly’. Island grammars were originally developed using SDF [van Deursen
and Kuipers, 1999; Moonen, 2001]. The integration of lexical and context-free
productions of SDF allows island grammars to be written in a single, declar-
ative specification that includes both lexical syntax for the definition of water
and context-free productions for the islands. Although SGLR did not support
error recovery per se, a parser using an island grammar behaves similar to
one that implements a noise-skipping algorithm. It can skip over any form of
noise in an input file. However, using an island grammar, this logic is entirely
encapsulated in the grammar definition itself.

Figure 6.4 shows an SDF specification of an island grammar that extracts
call statements from COBOL programs. Any other statements in the program
are skipped and parsed as water. The first context-free production of the
grammar defines the Module symbol, which is the start symbol of the gram-
mar. A Module is a series of chunks. Each Chunk, in turn, is parsed either as
a patch of WATER or as an island, in the form of a CALL construct. The lexical
productions define patterns for layout, water, and identifiers. The layout rule,
using the special LAYOUT symbol, specifies the kind of layout (i.e. whitespace)
used in the language. Layout is ignored by the context-free syntax rules, since
their patterns are automatically interleaved with optional layout. The WATER

symbol is defined as the inverse of the layout pattern, using the ~ negation
operator. Together, they define a language that matches any given character
stream.

136

module ExtractCalls
exports

context-free start-symbols
Module

context-free syntax
Chunk* → Module {cons("Module")}
WATER → Chunk {cons("WATER")}
"CALL" Id → Chunk {cons("Call")}

lexical syntax
[\ \t\n] → LAYOUT
~[\ \t\n]+ → WATER {avoid}
[a-zA-Z][a-zA-Z0-9]* → Id

lexical restrictions
WATER -/- [A-Za-z0-9]

Figure 6.4 An island grammar for extracting calls from a legacy application;
adapted from [Moonen, 2001].

The parse tree produced for an island is constrained using disambiguation
filters. First, the {avoid} annotation on the WATER rule specifies a disam-
biguation filter for these productions, indicating that the production is to be
avoided: at all times, a non-water Chunk is to be preferred. Second, the lexical
restrictions section specifies a restriction for the WATER symbol. This rule en-
sures that water is always greedily matched, and never followed by any other
water character.

The following example illustrates how programs are parsed using an island
grammar:

CALL CKOPEN USING filetable, status

Given this COBOL fragment, a generalized parser can construct a parse tree –
or rather a parse forest – that includes all valid interpretations of this text.2

Internally, the parse tree includes the complete character stream, all produc-
tions used, and their annotations. In this chapter, we focus on abstract syntax
trees (derived from the parse trees) where only the {cons(name)} constructor
labels appear in the tree. Figure 6.5 shows the complete, ambiguous AST for
our example input program. Note in particular the amb node, which indicates
an ambiguity in the tree: CALL CKOPEN in our example can be parsed either
as a proper Call statement or as WATER. Since the latter has an {avoid} an-
notation in its definition, a disambiguation filter can be applied to resolve the
ambiguity. Normally, these filters are applied automatically during or after
parsing.

6.4 P E R M I S S I V E G R A M M A R S

As we have observed in the previous section, there are many similarities be-
tween a parser using an island grammar and a noise-skipping parser. In the
former case, the water productions of the grammar are used to “fall back” in

2Note that parse forests are efficiently represented using the ATerm library [van den Brand
et al., 2000], which employs hash-consing to achieve maximal sharing of subtrees, ensuring that
any identical leaves and branches occupy the same space in memory.

Chapter 6. Error Recovery for Generated Modular Language Environments 137

Figure 6.5 The unfiltered abstract syntax tree for a COBOL statement, constructed
using the ExtractCalls grammar.

module Java-15
exports
lexical syntax

[\ \t\12\r\n] → LAYOUT
"\"" StringPart* "\"" → StringLiteral
"/*" CommentPart* "*/" → Comment
Comment → LAYOUT
...

context-free syntax
"if" "(" Expr ")" Stm → Stm {cons("If")}
"if" "(" Expr ")" Stm "else" Stm → Stm {cons("IfElse"), avoid}
...

Figure 6.6 Part of the standard Java grammar in SDF; adapted from [Bravenboer
et al., 2006a].

case an input sentence cannot be parsed, in the latter case, the parser algo-
rithm is adapted to do so. This observation suggests that the basic principle
behind island grammars may be adapted for use in recovery for complete,
well-defined grammars. In contrast, the technique of island grammars is tar-
geted only towards partial grammar definitions.

In the remainder of this section, we illustrate how the notion of produc-
tions for defining “water” can be used in regular grammars, and how these
principles can be further applied to achieve alternative forms of recovery from
syntax errors. Without loss of generality, we focus many of our examples on
the familiar Java language. Figure 6.6 shows a part of the SDF definition of the
language. Indeed, Java can be parsed without the use of SGLR, but SGLR has
been invaluable for extensions and embeddings based on Java such as those
described in [Bravenboer and Visser, 2004; Bravenboer et al., 2006a].

138

module Java-15-Permissive-ChunkBased
imports Java-15
exports
lexical syntax

~[\ \t\12\r\n]+ → WATER {recover}
lexical restrictions

WATER -/- ~[\ \t\12\r\n]
context-free syntax
WATER → Stm {cons("WATER")}

Figure 6.7 Chunk-based recovery rules for Java.

6.4.1 Chunk-Based Water Recovery Rules

Whereas island grammars have an underlying “chunk” structure, this struc-
ture is lacking in complete, well-defined grammars. Rather, these grammars
typically have a more hierarchical structure. For example, Java programs con-
sist of one or more classes that each contain methods, which contain state-
ments, etc. Still, it is possible to impose a more chunk-like structure on exist-
ing grammars in a coarse-grained fashion: for example, in Java, all statements
can be considered as chunks.

Figure 6.7 extends the standard Java grammar with a coarse-grained chunk
structure at the statement level. In this grammar, every Stm symbol is consid-
ered a “chunk,” which can be parsed as either a statement or as water, effec-
tively skipping over any noise that may exist within method bodies. Note that
the standard Java grammar, as shown in Figure 6.6, already uses an {avoid}

annotation to explicitly avoid the “dangling else problem,” a notorious am-
biguity that occurs with nested if/then/else statements. Therefore, in our
recovery rules we use {recover} rather than {avoid} to distinguish between
the two concerns of disambiguation and recovery.

We can extend the grammar of Figure 6.7 to introduce a chunk-like struc-
ture at other levels in the hierarchical structure formed by the grammar, e.g.
at the method level or at the class level, in order to cope with syntax errors in
different places. However, doing so leads to a large number of possible inter-
pretations of syntactically invalid (but also syntactically valid) programs. For
example, any invalid statement that appears in a method could then be parsed
as a “water statement.” Alternatively, the entire method could be parsed as a
“water method.” A preferred interpretation can be picked by counting all oc-
currences of the {recover} annotation in ambiguous branches, and selecting
the variant with the lowest count. In case of multiple branches with the same
count, the first can be picked.

The technique of selectively adding water recovery rules to a grammar
allows any existing grammar to be adapted. It avoids having to rewrite gram-
mars from the ground up to be more “permissive” in their inputs. Grammars
adapted in this fashion produce parse trees even for inputs with syntax errors
and cannot be parsed by the original grammar. The WATER constructors in
the ASTs indicate the location of errors, which can then be straightforwardly
reported back to the user.

Chapter 6. Error Recovery for Generated Modular Language Environments 139

While the approach we presented so far is already moderately effective in
recovery from syntax errors, there are three disadvantages to the recovery
rules as presented here. Firstly, the rules are language-specific and are best
implemented by an expert of a particular language and its SDF grammar
specification. Secondly, the rules are rather coarse-grained in nature; invalid
subexpressions in a statement cause the entire statement to be parsed as water.
Lastly, the additional productions alter the abstract syntax of the grammar
(introducing new WATER terminals), causing the parsed result to be unusable
for tools that depend on the original structure.

6.4.2 General Water Recovery Rules

Adapting a grammar to include water productions at different hierarchical
levels is a relatively simple yet effective way to selectively skip over “noise”
in an input file. In the remainder of this section, we refine this approach and
use it as a basis for our general approach to error recovery. Note throughout
this section we use only the standard, unaltered SDF specification language,
adding only the {recover} annotation and identifying idioms for recovery
rules.

Most programming languages feature comments and insignificant white-
space that have no impact on the logical structure of a program. They are
generally not considered to be part of the AST. As discussed in Section 6.3,
any form of layout, which may include comments, is implicitly interleaved
in the patterns of concrete syntax productions. The parser, in a way, skips
over these parts, in a similar fashion to the noise skipping of island gram-
mars. However, layout and comments interleave the context-free syntax of a
language at a much finer level than the recovery rules we have discussed so
far. Consider for example the Java statement

if (temp.greaterThan(MAX) /*API change pending*/)
fridge.startCooling();

in which a comment appears in the middle of the statement. Context-free
syntax in SDF is a convenient way to define context-free productions without
having to worry about the interleaving of layout. Only in the kernel syntax
that lies at the heart of SDF, does the production explicitly include the layout:

syntax
"if" <LAYOUT?-CF> "(" <LAYOUT?-CF> <Expr-CF>

<LAYOUT?-CF> ")" <LAYOUT?-CF> <Stm-CF>
→ <Stm-CF> {cons("If")}

The parse table generator for SDF automatically converts context-free produc-
tions to this form. (The production above was derived from the If production
in Figure 6.6). Expressed in kernel syntax, the symbol names in the rule above
use angle brackets and explicitly state that they are related to context-free (CF)
syntax. The optional layout symbols <LAYOUT?-CF> are not considered for the
construction of the abstract syntax tree (and may be stored as annotated data
instead).

140

module Java-15-Permissive-WaterOnly
imports Java-15
exports
lexical syntax

[A-Za-z0-9_]+ → WATERWORD {recover}
~[A-Za-z0-9_\ \t\12\r\n] → WATERSEP {recover}
WATERWORD → WATER
WATERSEP → WATER
WATER → LAYOUT {cons("WATER")}

lexical restrictions
WATERWORD -/- [A-Za-z0-9_]

Figure 6.8 Water recovery rules.

We can use the notion of interleaving context-free productions with op-
tional layout in order to define a new variation of the water recovery rules we
have shown so far. Consider Figure 6.8, which combines elements of the com-
ment definition of Figure 6.6 and the chunk-based recovery rules from Fig-
ure 6.7. It introduces optional water into the grammar, which interleaves the
context-free syntax patterns. As such, it skips noise on a much finer grained
level than our previous grammar incarnation.

To separate patches of water into small chunks, each associated with its
own significant {recover} annotation, we distinguish between WATERWORD

and WATERSEP tokens. This ensures that large strings, consisting of multiple
words and special characters each, are counted towards a higher recovery
cost.

As an example input, consider a programmer who is in the process of
introducing a conditional clause to a statement:

if (temp.greaterThan(MAX) // missing)
fridge.startCooling();

Still missing the closing bracket, the standard SGLR parser would report an
error near the missing character, and would stop parsing. Using the adapted
grammar, a parse forest is constructed that considers the different interpreta-
tions, taking into account the new water recovery rule. Based on the number
of {recover} annotations, the following would be the preferred interpreta-
tion:

if (temp.greaterThan)
fridge.startCooling();

In the resulting fragment both the opening (and the identifier MAX are dis-
carded, giving a total cost of 2 recoveries. The previous, chunk-based incarna-
tion of our grammar would simply discard the entire if clause. While not yet
ideal, the new version maintains a larger part of the input. Since it is based
on the LAYOUT symbol, it also does not introduce new “water” nodes into the
AST. For reporting errors, the original parse tree can be inspected instead.

The adapted grammar of Figure 6.8 no longer depends on hand-picking
particular symbols at different granularities to introduce water recovery rules.
Therefore, it is effectively language-independent, and can be automatically
constructed using only the LAYOUT definition of the grammar.

Chapter 6. Error Recovery for Generated Modular Language Environments 141

module Java-15-Permissive-InsertionsOnly
imports Java-15
exports
lexical syntax
→ ")" {recover, cons("INSERT")}
→ "]" {recover, cons("INSERT")}
→ "}" {recover, cons("INSERT")}
→ ">" {recover, cons("INSERT")}
→ ";" {recover, cons("INSERT")}

lexical syntax
INSERTSTARTQ StringPart* INSERTENDQ

→ StringLiteral {cons("INSERTEND")}
"\"" → INSERTSTARTQ {recover}
"\n" → INSERTENDQ

lexical syntax
INSERTSTARTC CommentPart* INSERTENDC

→ Comment {cons("INSERTEND")}
"/*" → INSERTSTARTC {recover}
EOF → INSERTENDC

Figure 6.9 Literal-insertion recovery rules.

6.4.3 Literal-Insertion Recovery Rules

So far, we have focused our efforts on recovery by deletion of erroneous sub-
strings. However, in an interactive environment, most parsing errors may well
be caused by missing substrings instead. Consider again our previous example:

if (temp.greaterThan(MAX) // missing)
fridge.startCooling();

Our use case for this has been that the programmer was still editing the
phrase, and did not yet add the missing closing bracket. Discarding the open-
ing (and the MAX identifier allowed us to parse most of the statement and the
surrounding file, reporting an error near the missing bracket. Still, a better
recovery would be to insert the missing).

One way to accommodate insertion based recovery is by the introduction
of a new rule to the syntax to make the closing bracket optional:

"if" "(" Expr Stm → Stm {cons("If"), recover}

This strategy, however, is rather specific for a single production, and would
significantly increase the size of the grammar if we applied it to all produc-
tions. A better approach would be to actually “insert” the particular literal
into the parse stream. SDF actually allows us to simulate this using sepa-
rate productions that “insert” literal symbols. We illustrate this in Figure 6.9.
Consider the first lexical syntax section, which lists a number of basic literal-
insertion recovery rules, each inserting a closing bracket or other literal that
ends a production pattern.

Literal-insertion rules have an empty pattern, indicating that they match
the empty string. That is, for each of these literals specified in the grammar,
an empty string may be matched against instead. Just as in our previous ex-
amples, {recover} ensures these productions are deferred. The constructor

142

annotation {cons("INSERT")} is used as a labeling mechanism for error re-
porting for the inserted literals. As it is defined in lexical syntax context, it is
not used in the resulting AST.

Insertion Rules for Opening Brackets In addition to insertions of closing brack-
ets in the grammar, we can also add rules to insert opening brackets. These
literals start a new scope or context. This is particularly important for com-
posed languages, where a single starting bracket can indicate a transition into
a different sublanguage, such as the |[and <| brackets of Figure 6.1 and Fig-
ure 6.2. Consider for example a syntax error caused by a missing opening
bracket in the SQL query of the former figure:

SQL stm = // missing <|
SELECT password FROM Users WHERE name = ${user}

|>;

Without an insertion rule for the <| opening bracket, the entire SQL fragment
could only be recognized as (severely syntactically incorrect) Java code. Thus,
it is essential to have insertions for such brackets.

On Literals, Identifiers, and Reserved Words Literal-insertion rules can also be
used for literals that are not reserved words. For example, for the combined
Stratego-Java language, a good insertion rule is:

lexical syntax
→ "end"

In Java, the string end is not a reserved word and is a perfectly legal identifier.
In Java, identifiers are defined as follows:

lexical syntax
[A-Za-z_\$][A-Za-z0-9_\$]* → ID

This lexical rule would match a string end. Still, the recovery rule will strictly
be used to insert the literal end, and never an identifier. The reason why the
parser can make this distinction is that the literal end itself is defined as an
ordinary symbol when normalized to kernel syntax:3

syntax
[e] [n] [d] → "end"

The literal-insertion rule simply adds an additional derivation for the "end"

symbol, providing the parser with an additional way to parse it. As such, the
rule does not change how identifiers (ID) are parsed. This is an important
property when considering composed languages in general. In many cases,
some literals in one sublanguage may not be reserved words in another. With
a naive recovery strategy that inserts tokens into the stream, this could result
in keywords being inserted in place of identifiers (e.g., end in Java). But since
the insertion rules only apply when a literal is expected, these effects are
avoided with our approach.

3Actually, in fully normalized kernel syntax form, the character codes [\101]
[\110] [\100] are used.

Chapter 6. Error Recovery for Generated Modular Language Environments 143

Insertion Rules for Lexical Symbols The lower sections of Figure 6.9 spec-
ify insertion rules for terminating the productions of the StringLiteral and
Comment symbols, first seen in Figure 6.6. Both rules have a {recover} anno-
tation on their starting literal. Alternatively, the annotation could be placed
on the complete production, but this formulation is beneficial for the runtime
behavior of our adapted parser implementation, ensuring that the annotation
is considered before construction of the literal.

The recovery rules for string literals and comments match either at the
end of a line, or at the end of the file as appropriate, depending on whether
newline characters are allowed in the original, non-recovering productions. In
contrast, an alternative approach would have been to add a literal insertion
production for the quote and comment terminator literals. However, by only
allowing the strings and comments to be terminated at the ending of lines and
the file, the number of different possible interpretations is severely reduced,
thus reducing the overall runtime complexity of the recovery.

Insertion rules can also be used to insert lexical symbols such as identifiers.
Missing identifiers generally indicate an error in the enclosing context-free
construct. Identifier insertion is a feasible approach to recover from these
kinds of errors, but requires the introduction of placeholder identifiers that
adds to the complexity of tools that process the AST. Still, for certain use cases
such as content completion in an IDE, this form of recovery can be useful. We
revisit the topic in Section 6.8.

6.4.4 Combining Different Recovery Rules

The water recovery rules of Section 6.4.2 and the insertion rules of Section 6.4.3
can be combined to form a unified recovery mechanism that allows both dis-
carding and insertion of substrings:

module Java-15-Permissive
imports

Java-15-Permissive-WaterOnly
Java-15-Permissive-InsertionsOnly

Together, the two strategies maintain a fine balance between discarding and
inserting substrings. Since the water recovery rules incur additional cost for
each water substring, insertion of literals will generally be preferred over dis-
carding multiple substrings. This ensures that most of the original (or in-
tended) user input is preserved.

6.4.5 Automatic Derivation of Permissive Grammars

So far, we only focused on a particular kind of literals for insertion into the
grammar, such as brackets, keywords, and string literals. Still, we need not
restrict ourselves to only these particular literals. In principle, any literal in
the grammar is eligible for use in an insertion recovery rule.

However, for many literals, automatic insertion can lead to unintuitive re-
sults in the feedback presented to the user. For example, we don’t want the
editor to suggest to insert a “try” or “synchronized” keyword. In those cases,

144

discarding some substrings instead may be a safer alternative. The decision
whether to consider particular keywords for insertion may depend on their
semantic meaning and importance [Degano and Priami, 1995]. To take this
into account, expert feedback on a grammar is vital. Since we have aimed
at maintaining language independence of the approach, our main focus is on
more generic, structure-based properties of the grammar.

In this section we have identified and focused on four different distinct,
general classes of literals that commonly occur in grammars:

• Closing brackets and terminating literals for context-free productions.

• Opening brackets and starting literals for context-free productions.

• Closing literals that terminate lexical productions where no newlines are
allowed (such as most string literals).

• Closing literals that terminate lexical productions where newlines are
allowed (such as block comments).

Each has its own particular kind of insertion rule, and each follows its own
particular definition pattern. By analysis of a grammar, using heuristic rules
to recognize these patterns, we derive water recovery rules and recovery rules
for insertions of the above categories. Thereby, our system maintains language
independence by providing a generic, automated approach towards the intro-
duction of recovery rules.

Automatically deriving recovery rules helps to maintain a valid, up-to-date
recovery rule set as languages evolve and are extended or embedded into
other languages. Particularly, as languages are changed, all recovery rules
that are no longer applicable are automatically removed from the grammar.

SDF specifications are fully declarative. It is this nature that is essential
for automated analysis and transformation of a grammar specification. It is
not feasible to do so for other syntax formalisms that use semantic actions
to construct ASTs and may maintain state or call external functions (e.g., to
determine operator priorities).

We formulated a set of heuristic rules for the detection of different produc-
tion patterns based on our experience with different grammars. For instance,
closing bracket and terminating literal insertions are added based on the follow-
ing criteria. First, we only consider context-free productions. Second, the first
and last symbols of the pattern of such a production must be a literal. And
finally, the last literal is not used as the starting literal of any other production.

The heuristic rules for the other categories involve a larger set of conditions.
The main characteristic of the second category is that it is based on starting
literals in context-free productions. We only consider a literal a starting literal
if it only ever appears as the first part of a production pattern in all rules of the
grammar. For the third category, we only consider productions with identical
starting and end literals. Finally, for the fourth category we derive rules for
matching starting and ending literals in LAYOUT productions. Note that we
found that some grammars (notably the Java grammar of [Bravenboer et al.,
2006a]) use kernel syntax for LAYOUT productions to more precisely control

Chapter 6. Error Recovery for Generated Modular Language Environments 145

module Java-15
...
context-free syntax
"{" BlockStm* "}" → Block {cons("Block")}
"(" Expr ")" → Expr {bracket}
"while" "(" Expr ")" Stm → Stm {cons("While")}
...
"void" "." "class" → ClassLiteral {cons("Void")}
(Anno | ClassMod)* "class" Id ... → ClassHead {cons("ClassHead")}

Figure 6.10 A selection of context-free productions that appear in the Java gram-
mar.

how comments are parsed. Thus, we consider both lexical and kernel syntax
for the comment-terminating rules.

As an example, consider the context-free productions of Figure 6.10. Look-
ing at the first production, and using the heuristic rules above, we can rec-
ognize that } qualifies as a closing literal. Likewise,) satisfies the conditions
we have set. By programmatically analyzing the grammar in this fashion, we
collected the set of closing literal insertion rules of Figure 6.9.

Note that none of the generated inserted closing literals of Figure 6.9 ever
occurs as an opening literal in the grammar. We only derive rules from brack-
ets that appear in a balanced fashion with another (possibly different) literal
(or a number of other literals). Insertions of literals that are not balanced with
another literal can lead to undesired results, since such constructs do not form
a clear nesting structure. We exclude lexical productions that define strings
and comments, for which we only derive more restrictive insertion rules.

From the productions of Figure 6.10 we can further derive the { and (

opening literals. In particular, the “while” keyword is not considered for
deriving an opening literal insertion rule, since it is not used in conjunction
with a closing literal in its defining production.

No set of heuristic rules is perfect. For any kind of heuristic, an example
can be constructed where it fails. We have encountered a number of anom-
alies that arose from our heuristic rules. For example, based on our heuristic
rules, the Java class keyword is recognized as a closing literal.4 This follows
from the “void” class literal production of Figure 6.10. The class keyword is
never used as a starting literal of any production (as seen in the same figure,
not even so for class headings), and therefore satisfies our set of rules. In
practice, we have found that these anomalies are relatively rare and harmless,
or sometimes even beneficial.

We evaluated our set of heuristic rules using Java, Java-SQL, Stratego and
Stratego-Java grammars, as outlined in Section 6.9. For these grammars, a
total number of respectively 19, 43, 37, and 47 insertion rules were gener-
ated, along with a constant number of water recovery rules as outlined in
Figure 6.8. The source code of the derivation tool and the complete set of
derived rules for these grammars are available from http://strategoxt.

4Note that for narrative reasons, we did not include an insertion rule for this keyword in
Figure 6.9.

146

http://strategoxt.org/Stratego/PermissiveGrammars
http://strategoxt.org/Stratego/PermissiveGrammars
http://strategoxt.org/Stratego/PermissiveGrammars
http://strategoxt.org/Stratego/PermissiveGrammars

org/Stratego/PermissiveGrammars. The implementation of the tool is
described in Section 5.5.

6.4.6 Customization of Permissive Grammars

A good error recovery mechanism is not only language independent, but is
also flexible [Degano and Priami, 1995]. That is, it allows grammar engineers
to use their experience with a language to improve recovery capabilities. Our
system, while remaining within the realm of the standard SDF grammar spec-
ification formalism, delivers both of these properties. Language engineers can
add their own recovery rules using SDF productions similar to those shown
earlier in this section.

Using automatically derived rules may not always lead to the best pos-
sible recovery for a particular language. Different language constructs have
different semantic meanings and importance. Different languages also may
have different points where programmers often make mistakes. For example,
a common “rookie” mistake in Stratego-Java is to use [| brackets |] instead
of |[brackets]|. This may be recovered from by standard deletion and in-
sertion rules. However, the cost of such a recovery is rather high, since it
would involve four deletions and two insertions. Other alternatives, less close
to the original intention of the programmer, might be preferred by the re-
covery mechanism. Based on this observation, a grammar engineer can add
substitution recovery rules to the grammar:

lexical syntax
"[|" → "|[" {recover, cons("INSERT")}
"|]" → "]|" {recover, cons("INSERT")}

These rules substitute any occurrence of badly constructed embedding brack-
ets with the correct alternative, at the cost of only a single recovery. Similarly,
grammar engineers may add recovery rules for specific keywords, operators,
or even placeholder identifiers as they see fit to further improve the result of
the recovery strategy.

Modular Definition of Customizations It is good practice to separate the gen-
erated recovery rules from the customized recovery rules. This way, the gen-
erated grammar does not have to be adapted and maintained by hand. A sep-
arate grammar module can import the generated definitions, while adding
new, handwritten definitions.

Besides composition, SDF also provides a mechanism for subtraction of
languages. The {reject} disambiguation annotation filters all derivations
for a particular set of symbols [van den Brand et al., 2002]. Using this fil-
ter, it is possible to disable some of the automatically derived recovery rules.
Consider for example the insertion rule for the class keyword, which arose
as an anomaly from the heuristic rules of the previous subsection. Rather
than directly removing it from the generated grammar, we can disable it by
extending the grammar with a new rule that rejects this recovery. Figure 6.11

illustrates this with a grammar that imports the generated permissive gram-
mar, and disables the class insertion rule.

Chapter 6. Error Recovery for Generated Modular Language Environments 147

http://strategoxt.org/Stratego/PermissiveGrammars
http://strategoxt.org/Stratego/PermissiveGrammars

module Java-15-Permissive-Customized
imports

Java-15-Permissive
exports

lexical syntax
→ "class" {reject}

...

Figure 6.11 A customized permissive grammar.

i = f (x) + 1 ;
i = f (x + 1);
i = f (x) ;
i = f (1);
i = (x) + 1 ;
i = (x + 1);
i = x + 1 ;
i = f ;
i = (x) ;
i = x ;
i = 1 ;

f (x + 1);
f (x) ;
f (1);

;

Figure 6.12 Interpretations of i=f(x)+1; with insertion recovery rules (under-
lined) and water recovery rules.

6.5 PA R S I N G P E R M I S S I V E G R A M M A R S

When all recovery rules are taken into account, permissive grammars provide
many different interpretations of the same code fragment. As an example,
Figure 6.12 shows the possible interpretations of the string i=f(x)+1;. The
interpretations can be obtained by applying additional recovery productions
for inserting parentheses or removing text parts. This small code fragment
illustrates the explosion in the number of ambiguous interpretations when
using a permissive grammar. The option of inserting opening brackets results
in even more possible interpretations, since bracket pairs can be added around
each expression that occurs in the program text.

Conceptually, the use of grammar productions to specify how to recover
from errors provides a very attractive mechanism to parse erroneous frag-
ments. All possible interpretations of the fragment are explored in parallel,
using a generalized parser. Any alternative that does not lead to a valid in-
terpretation is simply discarded, while the remaining branches are filtered by
disambiguation rules applied by a post processor on the created parse forest.
However, from a practical point of view, the extra interpretations created by
recovery productions negatively affect time and space requirements. With a
generalized parser, all interpretations are explored in parallel, which signif-
icantly increases the workload for the parser, even if there are no errors to
recover from.

148

void methodX() {
if (true) // missing {

foo();
}
int j = 0;
while (j < 8)

methodY(j++);
}

Figure 6.13 The missing opening bracket is detected at the while keyword.

6.5.1 Backtracking

As it is not practical to consider all recovery interpretations in parallel with
the normal grammar productions, we need a different strategy to efficiently
parse with permissive grammars. As an alternative to parsing different inter-
pretations in parallel, backtracking parsers revisit points of the file that allow
multiple interpretations (the choice points). For normal grammars, they are
less practical as backtracking parsers exhibit exponential behavior in the worst
case [Johnstone et al., 2004]. Moreover, as they only explore one possible inter-
pretation at a time, they do not allow declarative disambiguation. Still, when
applied to error recovery, these issues are less problematic. For pathological
cases with repetitive backtracking, the parser can be aborted, and (ideally)
a secondary, non-correcting, recovery technique can be applied. For typical
cases, parsing only a single interpretation at a time suffices; ultimately, only
one recovery solution is needed.

To minimize the overhead of recovery rules, we introduce a selective form
of backtracking to GLR parsing that is only used for the concern of error
recovery. We ignore all recovery productions during normal parsing, and em-
ploy backtracking to apply the recovery rules only once an error is detected.

6.5.2 Selecting Choice Points for Backtracking

An important challenge error recovery techniques must address is the differ-
ence between the actual location of the error and the point of detection [De-
gano and Priami, 1995]. Consider for example the code in Figure 6.13. Be-
cause of the missing opening bracket of the if statement, the closing bracket
after the enclosed foo(); statement is misinterpreted as closing the method.
At that point, the parser simply continues, interpreting the remaining state-
ments as class-body declarations. Consequently, the parser fails at the re-
served while keyword, which can only occur inside a method body. More
precisely, with a scannerless parser, it fails at the unexpected space after the
characters w-h-i-l-e; the character cannot be shifted and all branches (inter-
pretations at that point) are discarded.

In order to properly recover from a parse failure, the text that precedes the
point of failure must be reinterpreted using a correcting recovery technique.
Using backtracking, this text is inspected in reverse order, starting at the point
of detection, gradually moving backwards to the start of the input file.

Chapter 6. Error Recovery for Generated Modular Language Environments 149

Figure 6.14 Applying error recovery rules with backtracking. The initial point of
failure and the start of the recovery search space is indicated by a triangle. The
entire search space is indicated using dashed lines, where the numbers to the side
indicate the number of recovery rules can be applied at that line.

As generalized LR parsers process different interpretations in parallel, they
use a more complicated stack structure than regular LR parsers. Instead of
a single, linear stack, they use a graph-structured stack (GSS) that efficiently
stores the different interpretation branches, which are discarded as input to-
kens or characters are shifted [Tomita, 1988]. This poses a challenge for apply-
ing backtracking, since all the discarded branches must be stored in case the
old state is revisited. We found that it is prohibitive (in terms of performance)
to maintain the complete stack state for each shifted character. Therefore,
we only selectively record the stack structure to minimize the overhead intro-
duced. In the current implementation, we only create one backtracking choice
point for each line of the input file.

6.5.3 Applying Recovery Rules

Figure 6.14 illustrates how to apply backtracking to recover the Java fragment
of Figure 6.13. The algorithm iteratively explores the input stream in reverse
order, starting at the nearest choice point. With each iteration of the algo-
rithm, different candidate recoveries are explored in parallel for a restricted
area of the file and for a restricted number of recovery rule applications. For
each following iteration the size of the area and the number of recovery rule
applications are increased.

Figure 6.14a shows the parse failure after the while keyword. The point
of failure is indicated by the triangle. The actual error, at the closing bracket
after the if statement, is underlined. The figure shows the different choice
points that have been stored during parsing using circles in the left margin.

150

The first iteration of the algorithm (Figure 6.14b) focuses on the line where
the parser failed. The parser is reset to the choice point at the start of the line,
and enters recovery mode. At this point, only candidate recoveries that use
one recovery production are considered; alternative interpretations formed by
a second recovery production are cut off. Their exploration is postponed until
the next iteration. In this example scenario, the first iteration does not lead to
a valid solution.

For the next iteration, in Figure 6.14c, the search space is expanded with
respect to the size of the inspected area and the number of applied recovery
rules. The new search space consists of the line that precedes the point of de-
tection, plus the error detection line where the recovery candidates with two
changes are considered, resuming the interpretations that were previously cut
off.

In Figure 6.14d, the search space is again expanded with the preceding
line. This time, a valid recovery is found: the application of a water recovery
rule that discards the closing bracket leads to a valid interpretation of the
erroneous code fragment. Once the original line where the error was detected
can be successfully parsed, normal parsing continues.

6.5.4 Algorithm

The implementation of the recovery algorithm requires a number of (relatively
minor) modifications of the SGLR algorithm used for normal parsing. First,
productions marked with the {recover} attribute are ignored during normal
parsing. Second, a choice point is stored for each newline character. And
finally, if all branches are discarded and no accepting state is reached, the
parser enters recovery mode. Once the recovery is successful, normal parsing
resumes with the newly constructed stack.

Figure 6.15 shows the recovery algorithm in pseudo code. The Recover

function controls the iterative search process described in Section 6.5.3. The
function starts with some initial configuration (line 3–5); it enables the recov-
ery productions that are ignored in normal parsing mode, selects the most re-
cent choice point, and initializes the candidates variable. The choice points
from the point of failure are then visited in reverse order (line 6–9). Using
the RecoverParse function, choice points are iteratively explored (line 7), at-
tempting to find a valid interpretation of the program by applying recovery
rules. Once a valid interpretation is found, the set of stacks (GSS structure)
of the parser is non-empty (line 9). During each iteration, the algorithm also
maintains candidate stacks that represent a partial interpretation of the pro-
gram that may lead to a recovery in a later iteration of the algorithm, as the
search space is increased.

The RecoverParse function attempts to construct a valid interpretation by
re-parsing the fragment starting from the choice point, optionally revisiting
previous candidate stacks that were previously cut off. After the parser is
reset to the state stored by the choice point (line 18–20), characters are con-
sumed from the choice point location, until the original point of failure is

Chapter 6. Error Recovery for Generated Modular Language Environments 151

Recover(parser)
1 B Input: parser - A parser instance
2

3 parser.ignoreRecoverProductions← false
4 choicePoint← Most recent choice point
5 candidates← {}
6 do
7 candidates← RecoverParse(parser, candidates, choicePoint)
8 choicePoint← Choice point before choicePoint or choicePoint if none
9 until | parser.stacks | > 0

10 parser.ignoreRecoverProductions← true

RecoverParse(parser, candidates, choicePoint)
12 B Input:
13 parser - The parser instance
14 candidates - Previous candidate stacks
15 choicePoint - The starting point for recovery
16 B Output: New candidates created by one extra recovery production
17

18 parser.stacks← choicePoint.stacks
19 parser.offset← choicePoint.offset
20 newCands← {}
21 while parser.offset ≤ parser.failureLocation
22 do
23 offsetCands← { c | c ∈ candidates ∧ c.offset = parser.offset }
24 parser.stacks← parser.stacks∪ offsetCands
25 parser.parseCharacter()
26 createdCands← Stacks of parser created using a recovery production
27 parser.stacks← parser.stacks \ createdCands
28 newCands← newCands∪ createdCands
29 return newCands

Figure 6.15 A backtracking algorithm to apply recovery rules.

reached (line 21). With each iteration, previously cut-off candidate stacks are
added to the set of stacks of the parser, if the offset of the candidate matches
the offset of the parser at that point (line 23–24). After that, a single character
is parsed (line 25), which can result in stacks being popped (interpretations
failing) or new stacks being added. Any new candidate stacks found that
used a recovery rule are excluded from further exploration and will be re-
visited in the next iteration (line 26–28). If eventually all stacks are popped,
RecoverParse leaves the parser instance with an empty set of stacks and only
returns the candidate stacks for further examination.

After the algorithm completes and finds a non-empty set of stacks for the
parser, it enters an optional disambiguation stage. In case more than one

152

valid recovery is found, stacks with the lowest recovery costs are preferred.
These costs are calculated as the sum of the cost of all recovery rules applied
to construct the stack. We employ a heuristic that weighs the application
of a water recovery rule as twice the cost of the application of an insertion
recovery rule, which accounts for the intuition that it is more common that
a program fragment is incomplete during editing than that a text fragment
was not intended and therefore should be deleted. Ambiguities obtained by
application of a recovery rule annotated with {reject} form a special case.
The reject ambiguity filter removes the stack created by the corresponding
rule from the GSS, thereby effectively disabling the rule.

6.6 LAYOUT-SENSITIVE RECOVERY OF SCOPING STRUCTURES

In this section we describe a recovery technique specific for errors in scop-
ing structures. Scoping structures are usually recursive structures specified
in a nested fashion [Charles, 1991]. Omitting brackets (or other character se-
quences marking scopes) of scopes is one of the most common errors made by
programmers. These errors can be addressed by common parse error recov-
ery recovery techniques that insert missing brackets. However, as scopes can
be nested, there are often many possible positions where a missing bracket
can be inserted. A challenge is to select the most appropriate position.

class C {
void m() {

int y;
int x;

}

Figure 6.16 Missing }.

As an example, consider the Java fragment in Fig-
ure 6.16. This fragment could be recovered by insert-
ing a closing bracket at the end of the line with the
second opening bracket, or at any line after this line.
However, the use of indentation suggests the best
choice may be just before the int x; declaration.
Bridge parsing [Nilsson-Nyman et al., 2009] provides
an algorithm to improve error recovery based on in-
dentation. Based on a set of rules that describe the typical relation between
scopes and layout for Java, it can correctly recover cases such as the example
above.

A bridge parser can be configured to work for any given language, and
works independently of a particular parser technology. Bridge parsing shares
its inspiration in island grammars [van Deursen and Kuipers, 1999; Moonen,
2001, 2002] with our permissive grammars approach: A bridge parser em-
ploys a scanner that only recognizes tokens that make up scoping structures
(“islands”) and important tokens for determining how those islands should be
connected (“reefs”). All other tokens (“water”) are skipped. Given a list with
these kinds of tokens and a set of constraints, the bridge parser constructs a
bridge model, which captures the scopes in the input.

Figure 6.17 shows an example of a token list and a bridge model for the
program fragment of Figure 6.16. At the top of the figure, the token stream is
shown and the mapping to islands, water, and reefs. Reefs are have a number
indicating the indentation level, which is key for the identification of scope
structures in the form of matching islands. The bottom of the figure shows

Chapter 6. Error Recovery for Generated Modular Language Environments 153

"class C " "{" IND "void m() " "{" IND "int y;" IND "int x;" IND "}"

SOF R(0) W { R(1) W { R(2) W R(1) W R(0) } EOF

SOF R(0) W { R(1) W { R(2) W R(1) W R(0) } EOF

broken
}

recovery

Figure 6.17 A bridge parser model. Top: tokenization; middle: mapping to islands
(double edges), water (W), and reefs (R(n)); bottom: bridges between matching
islands.

the complete bridge model with matching islands connected by bridges. It
also shows the identification of a broken scope, revealed by an island without
a bridge, and its recovery, identified by matching the island with the reef
that follows it. A comprehensive description of the algorithm, incrementally
constructing multiple bridges, is given in [Nilsson-Nyman et al., 2009].

A bridge parser builds its bridge model using tokens created by a scanner.
This may appear contrary to the scannerless nature of SGLR, but practical
experience has shown that a bridge parser is most time and memory-efficient
when independent from a specific grammar and focusing just on the scoping
structures of the language. Based on an accurate (scannerless) lexical analysis,
additional reefs can be identified using the keywords of a language, but pre-
vious results showed that doing so only marginally improves recovery quality
[de Jonge et al., 2009]. For this reason and for simplicity, the bridge parsers
used in this chapter only include scope tokens and layout reefs. A limitation
of this approach is that for embedded languages, it is possible that tokens
have different syntactic meanings: { might be a scope delimiter in one lan-
guage and an operator in another. Still, the layout-sensitive bridge model
gives an approximation of the scoping structure in those cases, which can
improve recovery results when used in combination with recovery rules.

A bridge parser is generated from a bridge parser specification (or bridge
grammar), specifying tokens such as islands and reefs, along with constraints
for matching and recovering of scopes. Bridge parser specifications are com-
positional and can be extended in several steps. Generic behavior such as
“closest match recovery” or “layout-based recovery” are defined in a generic
module that can be reused and redefined by other grammars. For specific
grammars, additional behavior can be added, e.g. taking into account key-
words and layout conventions for expressions. Using heuristics such as those
described in Section 6.4.5, instance grammars can be automatically derived.

154

Bridge parsing forms a supplementary recovery approach that can be used
together with permissive grammars. It also formed the inspiration for a
layout-sensitive region that we discuss next.

6.7 L AY O U T- S E N S I T I V E R E G I O N A L R E C O V E RY

In this section we describe a layout-sensitive region recovery algorithm that
ensures recovery efficiency and helps cope with pathological cases not easily
addressed with only permissive grammars, backtracking, and bridge parsing.
Relying on the increasing search space of permissive grammars and back-
tracking, it is not always feasible to provide good recovery suggestions in an
acceptable time span. Problems can arise when the distance between the error
location and the detection location is exceptionally large, or when the recov-
ery requires many combined recovery rule applications. The latter can occur
when multiple errors are tightly clustered, or when no suitable recovery rule
is at hand for a particular error. In general, a valid parse can be found after
expanding the search space, but at a risk of a high performance cost, and po-
tentially resulting in a complex network of recovery suggestions that do not
lead to useful feedback for programmers. Section 6.4.3 discussed an exam-
ple of this, in which an entire SQL fragment would be parsed as (severely
incorrect) Java code.

To address these concerns, this section introduces an approach to identify
the region in which the actual error is situated. By constraining the recovery
suggestions to a particular part of the file, region selection improves the effi-
ciency as well as the quality of the recovery, avoiding suggestions that are
spread out all over the file. In some cases it is better to ignore a small part of
the input file, rather than to try and fix it using a combination of insertions
and discarded substrings. As a second application of the regional approach,
region skipping is used as a fallback recovery strategy that discards the erro-
neous region entirely in case a detailed analysis of the region does not lead to
a satisfactory recovery.

6.7.1 Nested Structures as Regions

Language constructs such as “while” statements and class bodies form suit-
able regions for regional error recovery. They form free standing blocks, in the
sense that they can be omitted without influencing the interpretation of other
blocks. Erroneous free standing blocks can simply be skipped, providing a
coarse recovery that allows the parser to continue. A typical technique to se-
lect such regions is to look for certain marker tokens in the context of an error,
such as the fiducial tokens of Pai and Kieburtz [1980]. These tokens depend
on the language used. For example, for Java, keywords such as while and
class could be used. We will take a more language-independent approach.

The bridge parsing technique discussed in Section 6.6 exploits layout char-
acteristics to detect the intended nesting structure of a program. In this sec-
tion, we present a region selection technique that, inspired by bridge parsing,

Chapter 6. Error Recovery for Generated Modular Language Environments 155

class X {
int i;

void method() {
i = 1;
if (true) {

foo();
bar();

}
return;

}
}

Figure 6.18 Indentation closely follows the hierarchical structure of a program.

uses indentation to detect erroneous structures. Indentation typically follows
the logical nesting structure of a program, as illustrated in Figure 6.18. The
relation between constructs can be deduced from the layout. An indentation
shift to the right indicates a parent-child relation, whereas the same indentation
indicates a sibling relation. The region selection technique inspects the parent
and sibling structures near the parse failure location to detect the erroneous
region.

Indentation usage is not enforced by the language definition. Proper use
of layout is a convention, being part of good coding practice. We generally
assume that most programmers apply layout conventions, but should keep
in mind the possibility of inconsistent indentation usage which decreases the
quality of the results. The second assumption we make is that programs
contain free standing blocks, i.e. that skipping a region still yields a valid
program. Most programming languages seem to meet this assumption. If
both assumptions are met, layout-sensitive regional recovery can lead to better
and faster recovery results.

6.7.2 Layout-Sensitive Region Selection

We follow an iterative process to select an appropriate region that encloses
a syntax error. Each iteration, a different candidate region is considered. This
candidate is then validated and either accepted as erroneous or rejected; in
case of a rejected candidate, another candidate is considered. We show exam-
ple scenarios in Figure 6.19 and 6.20.

Figure 6.19 shows a syntax error and the point of detection, indicated by a
triangle (left figure). A candidate region is selected based on the alignment of
the void keyword and the closing bracket (middle figure). The candidate is
then validated by discarding the region. Since the parsing of the remainder of
the fragment is successful (right figure), the region is accepted as erroneous.
Figure 6.20a shows a different example, where a candidate region is rejected.
Based on the point of detection, an obvious candidate region is the m2 method
(middle figure). However, an attempt to parse the succeeding construct leads

156

Figure 6.19 A candidate region is validated and successfully discarded.

(a) A candidate region is rejected.

(b) An alternative candidate region is validated and successfully discarded.

Figure 6.20 Iterative search for a valid region.

to a premature parse failure, therefore the region is rejected. In Figure 6.20b
an alternative candidate region is selected, this time one preceding the point
of detection. This region is successfully validated.

The region validation criteria should balance the risk of selecting the wrong
candidate, which may lead to spurious errors, and the risk of rejecting a cor-
rect candidate region. The latter typically occurs in the context of multiple
errors, in which a new, unrelated error causes the parser to fail again. Both
cases lead to large regions, which should be avoided. We currently consider
a region valid if the two lines of code succeeding it parse correctly, which has
shown good practical results.

6.7.3 Selection Schemata

The candidate regions are explored in an ordered fashion, with the aim to
find the smallest fragment enclosing the error. In case the erroneous region is
not found, the whole file is marked as erroneous region and further inspected
by a correcting technique.

Chapter 6. Error Recovery for Generated Modular Language Environments 157

while(true)) {
foo();

}

Current structure The first candidate region is the con-
struct starting from the error detection location. The
region is recognized by a forward skip until the end of
the construct is found. In the example to the right, the
parser fails after reading the mistakenly inserted second bracket. Discarding
the entire while statement resolves the error.

void methodX() {
foo(
bar();

}

Previous structure The second candidate is the struc-
ture preceding the error detection location. The region
is detected by a backwards skip, using the indentation
information stored in the choice points. Typical prob-
lems that are solved by discarding the previous structure are incomplete lines
and scope errors caused by a missing closing bracket. The error in the exam-
ple to the right is detected after the bar(); statement, while the preceding
line caused the error.

if (c) {
foo();

else
bar();

Siblings Regions that are mutually dependent should
be discarded as a whole. A typical example is shown
at the right. The unclosed “then” clause cannot be dis-
carded, because the “else” clause cannot exist in isola-
tion. The “sibling-procedure” deals with this situation. The procedure starts
with the current structure as discarded region. Then it successively includes
the prior sibling and the next sibling, until a valid erroneous region is found
or all siblings have been considered.

int foo() {}
int i = 1;
return i;

}

Parent The next region considered is the parent
structure, identified through a forward and backward
search for a decrease in indentation. The example
shows a method that accidentally has two closing
brackets, which causes the parser to fail at the return keyword. Discarding the
method region solves the problem. The parent selection adds some robust-
ness to the selection scheme. Small deviations in the use of indentation, or
nearby, unrelated errors might be captured in the parent region. If the parent
region can not be discarded, we continue recursively with the parent of the
parent and so on.

6.7.4 Practical Considerations

bar();
while(true)

foo();
doX();

while(true)
{

foo();
}

Brackets Similar to indentation conventions, conven-
tions for using brackets can vary among programmers
and among programming languages. The placement
and whether or not to use brackets for block structures
varies, as illustrated in the figure. The two code frag-
ments have the same indentation characteristics, but
have a different decomposition in regions. To address
this issue, our implementation adapts the selection schemata to cover these
cases specific for a generic notion of brackets or other block-enclosing tokens.

158

EvalExp =
EvalAdd <+
EvalSubt <+
EvalMul <

Separators Separators and operators that may reside
between language constructs are another practical con-
sideration. The last line in this Stratego fragment has
an error, however removing the erroneous line does not
lead to a valid parse. The operator <+ that connects the erroneous construct
with the preceding construct must be removed as well. We have extended the
region selection schema for last siblings with a candidate region consisting of
the original region plus the lexical token at the end of the preceding sibling.

/* Comments ...
int foo() {

...
}
...
EOF

Multi-line comments and strings The selection
schemata can generally select erroneous regions that
are not located at the failure location. However, if the
distance between the error and the failure location is
large, the region selection schema can fail to locate the
error. A particularly problematic case commonly seen in practice are unclosed
lexicals such as block comments or multi-line strings. After the opening of the
block comment (/*), the parser accepts all characters until the block comment
is ended (*/) or the end of file is reached. As a consequence, a missing block
comment ending is typically detected lately. The stack structure of the parser
in these scenarios is characterized by a reduction that involves many char-
acters starting from the characters that open the flat structure (/*). If this
structure is recognized, a candidate region is selected from the start of the
reduction, making it possible to cope with flat structures such as block com-
ments that do not follow the indentation.

6.7.5 Integrating Recovery Techniques

We combine the different techniques described in this chapter in a multiply
staged recovery approach. Region selection is applied first to detect the erro-
neous region. In the second stage, the erroneous region is inspected by one of
the correcting techniques, bridge parsing or permissive parsing. Since bridge
parsing provides the most natural recoveries from a user perspective, it is
applied first. The bridge parser returns a set of recovery suggestions based
on bracket insertions, which are applied during a re-parse of the erroneous
region. In case the bridge parser suggestions do not lead to a successful re-
covery, the permissive grammars approach described in Section 6.5 is used,
where backtracking is restricted to the erroneous region. In case both cor-
recting techniques fail, the erroneous region is skipped as a fallback recovery
strategy.

6.8 A P P LY I N G E R R O R R E C O V E RY I N A N I D E

A key goal of error recovery is its application in the construction of IDEs.
Modern IDEs rely heavily on parsers to produce abstract syntax trees that
form the basis for editor services such as the outline view, content comple-
tion, and refactoring. By supporting error recovery, they can provide these
services even when the program has syntactic errors, which is very common

Chapter 6. Error Recovery for Generated Modular Language Environments 159

when source code is edited interactively. In this section, we describe the role
of error recovery in different editor services and show language-parametric
techniques for using error recovery with these services.

6.8.1 Efficient Construction of Languages and Editor Services

As IDEs become both more commonplace and more sophisticated, it becomes
increasingly important to lower the threshold of creating new languages and
developing IDEs for these languages. In order to make this possible, language
workbenches have been developed that combine the construction of languages
and editor services, and improve the productivity of language engineers by
providing high-level languages, frameworks, and tools for efficient language
engineering [Fowler, 2005a].

6.8.2 Guarantees on Recovery Correctness

Using regional recovery, bridge parsing and permissive grammars, the parser
can construct ASTs for syntactically incorrect inputs. These trees can be con-
structed using generated or handwritten recovery rules, and may have gaps
for regions that could not be parsed. Ultimately, error recovery provides a
speculative interpretation of the intended program, which may not always be
the desired interpretation. As such, it is both unavoidable and not uncom-
mon that editor services operate on inaccurate or incomplete information.
Experience with modern IDEs shows that this is not a problem in itself, as
programmers are shown both syntactic and semantic errors directly in the
editor.

While error recovery is ultimately a speculative interpretation of an incor-
rect input, our approach does guarantee well-formedness of ASTs according
to the grammar. That is, it will only produce ASTs with tree nodes that con-
form to the structure imposed by production rules in the grammar. Even
for cases where a region of code is skipped by the parser, this property is
maintained as only well-formed trees can be constructed using a grammar’s
production rules, even when augmented with derived recovery rules as de-
scribed in Section 6.4:

• Water recovery rules (Section 6.4.2) consume parts of the input but do
not directly contribute AST nodes.

• Insertion recovery rules for context-free production rules (Section 6.4.3,
6.4.5) do not directly contribute tree nodes.

• Insertion recovery rules for lexical production rules (Section 6.4.3, 6.4.5)
only contribute lexical tree nodes that correspond to the recovered lexi-
cals.

• Bridge parsing insertions do not directly contribute tree nodes

• Finally, regional recovery (Section 6.7) only consumes input and does
not contribute tree nodes.

160

Figure 6.21 An editor for Stratego with embedded quotations of Java code.

The property of well-formedness of trees significantly simplifies the im-
plementation and specification of editor services, as they do not require any
special logic to handle badly parsed constructs with missing nodes or special
constructors. This approach also ensures separation of concerns: error recov-
ery is purely performed by the parser, while editor services do not have to
treat syntactically incorrect programs differently. This separation of concerns
means that all editor services could be implemented without any logic specific
for error recovery. Still, there are a number of editor services that inherently
require some interaction with the recovery strategy that we discuss next.

6.8.3 Syntactic Error Reporting

Syntax errors are reported to users by means of an error location and an error
message. In traditional compilers, the error location was reported as a line/-
column offset, while modern IDEs use the location for the placement of error
markers in the editor. We use generic error messages that depend on the class
of recovery (Section 6.4.5). For water recovery rules and for region recoveries,
we use “[string] not expected,” for insertion rules we use “expected: [string],”
and for insertion rules that terminate a construct we use “construct not ter-
minated.” The location at which the errors are reported is determined by the
location at which a recovery rule was applied, rather than by the location of
the parse failure. For region recoveries, where no recovery rule is applied,
the start and end location of the region, plus the original failure location is
reported instead.

Figure 6.21 shows a screenshot of an editor for Stratego with embedded
Java and two syntax errors. Due to error recovery, the editor can still provide
syntax highlighting and other editor services, while it marks all the syntax
errors inline with red squiggles.

6.8.4 Syntax Highlighting

Syntax highlighting has traditionally been based on a purely lexical analysis
of programs. The most basic approach is to use regular expressions to recog-
nize reserved words and other constructs and assign them a particular color.
Unfortunately, for language engineers the maintenance of regular expressions

Chapter 6. Error Recovery for Generated Modular Language Environments 161

for highlighting can be tedious and error prone; a more flexible approach is to
use the grammar of a language. Using the grammar, a scanner can recognize
tokens in a stream, which can be used to assign colors instead.

More recent implementations of syntax highlighting do a full context-free
syntax analysis, or even use the semantics of a language for syntax highlight-
ing. For example, they may assign Java field accesses a different color than
local variable accesses.

Scannerless syntax highlighting When using a scannerless parser such as
SGLR, a scanner-based approach to syntax highlighting is not an option; files
must be fully parsed instead. This makes it important that a proper parse
tree is available at all times, even in case of syntactic errors. To illustrate this,
consider the following incomplete Java statement:

Tree t = new

Using a scanner, the word new can be recognized as one of the reserved key-
words and can be highlighted as such. In the context of scannerless parsing,
a well-formed parse tree must be constructed for the keyword to be high-
lighted. In situations like this one, that may not be possible, resulting in no
highlighting for the new keyword.

Fallback syntax highlighting Syntax highlighting is equally or possibly more
important for syntactically incorrect programs than for syntactically correct
programs, as it indicates how the editor interprets the program as a program-
mer is editing it. A fallback syntax highlighting mechanism is needed to address
this issue.

A natural way of implementing fallback syntax highlighting is by using a
lexical analysis for those cases where the full context-free parser is unable to
distinguish the different words to be highlighted. This analysis can be per-
formed by a rudimentary tokenizer that can recognize separate words such
that they can be distinguished for colorization. Simple coloring rules can
then be applied to any tokens that do not belong to recovered tree nodes, e.g.
highlighting all the reserved keywords and string literals. Consequently, pro-
grammers get highly responsive syntax highlighting as they are typing, even
if the program is not (yet) syntactically correct. A limitation of the approach
is that with a tokenizer it cannot distinguish between keywords in different
sublanguages, making the approach only viable as a fall-back option.

6.8.5 Content Completion

Content completion, sometimes called content assist, is an editor service that
provides completion proposals based on the syntactic and semantic context
of the expression that is being edited. Where other editor services should
behave robustly in case of incomplete or syntactically incorrect programs, the
content completion service is almost exclusively targeted towards incomplete
programs. Content completion suggestions must be provided regardless of
the syntactic state of a program: an incomplete expression ‘blog.’ does not

162

context-free syntax

"for" "(" FormalParam ":" Expr ")" Stm →
Stm {cons("ForEach")}

"for" "(" FormalParam ":" Expr ")"? →
Stm {ast("ForEach(<1>, <2>, NULL())"), completion}

"for" "(" FormalParam ":"? ")"? →
Stm {ast("ForEach(<1>, NULL(), NULL())"), completion}

Figure 6.22 Java ForEach production and its derived completion rules.

conform to the syntax, but for content completion it must still have an abstract
representation.

Completion recovery rules In case context completion is applied to an incom-
plete expression, the syntactic context of that expression must be recovered.
This is especially challenging for language constructs with many elements,
such as the “for” statement in the Java language. Even if only part of such
a statement is entered by a user, it is important for the content completion
service that there is an abstract representation for it. Based on the recovery
rules of Section 6.4 this is not always the case. Water recovery rules interpret
the incomplete expression as layout. As a consequence, the syntactic context
is lost. Insertion recovery rules can recover some incomplete expressions, but
only insert missing terminal symbols.

We introduce specific recovery rules for content completion that specify
what abstract representation to use for incomplete syntactic constructs. These
rules use the {ast(p)} annotation of SDF to specify a pattern p as the abstract
syntax to construct. Figure 6.22 shows examples of these rules The first rule
is a normal production rule for the Java “for each” construct. The second rule
indicates how to recover this statement if the Stm non-terminal is omitted,
using a placeholder pattern NULL() in place of the abstract representation of
the omission. The third rule handles the case where both non-terminals are
omitted.

The completion recovery rules are automatically derived by analyzing the
original productions in the grammar, creating variations of existing rules with
omitted non-terminals and marking terminals as optional patterns. For best
results, we generate rules that use placeholder patterns that reflect the signa-
ture of the original production, such as an empty list pattern []. By analyzing
injection chains in the grammar, it is possible to find sensible placeholder pat-
terns for most non-terminals. For example, for the second rule of Figure 6.22,
a pattern Block([]) can be used in place of the NULL() placeholder. Produc-
tion rules that do not use the NULL() placeholders are also suitable for normal
error recovery, since they preserve the wellformedness property.

Runtime support Completion recovery rules are designed to support the
special scenario of recovering the expression where content completion is re-
quested. The cursor location provides a hint about the location of the (possi-
ble) error. Instead of backtracking after an error is found, we apply comple-

Chapter 6. Error Recovery for Generated Modular Language Environments 163

tion recovery rules if they apply to a character sequence that overlaps with the
cursor location. This approach adequately completes constructs at the cursor
location and minimizes the overhead of completion rules in normal parsing
and other recovery scenarios. It also ensures that the completion recovery
rules have precedence over the normal water and insertion recovery rules.

6.9 E VA L U AT I O N

We evaluate our approach with respect to the following properties:

• Quality of recovery: How well does the environment recover from input
errors?

• Performance and scalability: What is the performance of the recovery
technique? Is there a large difference in parsing time between erroneous
and correct inputs? Does the approach scale up to large files?

• Editor feedback: How well do editor services perform based on the
recovered ASTs?

In the remainder of this section we describe our experimental setup, experi-
mentally select an effective combination of techniques and recovery rules, and
show the quality and performance results of the selection.

6.9.1 Setup

To evaluate quality and performance of the suggested recovery techniques we
use a test set of programs written in WebDSL, Stratego-Java, Java-SQL and
Java, based on the following projects:

• YellowGrass: A web-based issue tracker written in the WebDSL lan-
guage.5

• The Dryad compiler: An open compiler for the Java platform (Chapter 2)
written using Stratego-Java.

• The StringBorg project: A tool and grammar suite that defines different
embedded languages [Bravenboer et al., 2010], providing Java-SQL code.

• JSGLR: A Java implementation of the SGLR parser algorithm [Spoofax,
2011].

Syntax error seeding

To produce a test set with syntax errors, we use error seeding techniques
based on files from these projects. The development of representative syntax
error benchmarks is a challenging task, and should be automated in order
to minimize the selection bias. There are many factors involved for selecting
the test inputs, such as the type of grammar, the type of error, distribution

5http://www.yellowgrass.org/.

164

http://www.yellowgrass.org/

of errors over the file, and the layout characteristics of the test files. With
these factors in mind, we have taken the approach of generating a reasonably
large set of syntactically incorrect files from a smaller set of correct base files.
We seed syntax errors at random locations in the base files using a set of
rules selected to represent typical editing errors. We distinguish the following
categories for seeded errors:

• Incomplete construct, language constructs that miss one or more suffix
symbols, e.g. a Java method call index(.

• Erroneous context, a special case of incomplete constructs, where a subex-
pression of a construct can not be parsed because of a broken surround-
ing context, e.g. the assignment in for (i = 0.

• Misplaced construct, a syntactically valid construct that appears at a point
in the program where it is not expected, e.g. the assignment in class X

{ int i; i = 3; }.

• Missing, incorrect or superfluous symbols, parts of language constructs
that are either missing or unexpected at a certain location, e.g. the miss-
ing void keyword in a method declaration public foo() {}.

• Combined is the case where two or more errors, from the above men-
tioned categories, appear in the source code. These errors are randomly
distributed over the code.

We selected five representative base files from each project, and generated test
files using the error seeding rules. We applied a sanity check to ensure that
generated test cases are indeed syntactically incorrect and that there are no
duplicates. In total, we generated 297 Stratego-Java test cases, 190 WebDSL
test cases, 195 Java-SQL test cases, and 301 Java testcases.

In addition, we generated a second test set consisting of 314 Stratego-Java
test cases in the Incomplete construct and Erroneous context categories specif-
ically to evaluate the content completion editor service. Finally, for testing
of scalability, we manually constructed a test set consisting of 14 erroneous
Stratego-Java files of increasing size in the interval of 1000–7000 LOC.

Test oracle

We compare the recovery result of each generated syntax error to the AST
of the base file. For some files in the Incomplete construct and Broken context
categories, the base files do not realistically reflect the expected result, as
information is lost in the test file. For example, for a “for” loop with an
Incomplete construct error – such as for (x = 1; x – the original body of the
construct is lost. For these cases we construct an expected result, a priori, by
completing these constructs with the minimal amount of symbols possible. In
the case of the “for” loop that would be for (x = 1; x;) {}.

Chapter 6. Error Recovery for Generated Modular Language Environments 165

Quality Measuring

To measure the quality of a recovery, we compare each recovered test file
against the base file or expected file. We use two methods to compare the
results. First, we do a manual inspection of the pretty-printed results, fol-
lowing the quality criteria of Pennello and DeRemer [1978]. Following these
criteria, an excellent recovery is one that is exactly the same as the intended
program, a good recovery is close to this result, and a poor recovery introduces
spurious errors. Since this method is arguably a subjective comparison, as a
second method, we also do an automated comparison of the abstract syntax.
For this, we print the AST of the recovered file to text using the ATerm for-
mat [van den Brand et al., 2000], formatted so that nested structures appear
on separate lines. We then count the number of lines that differ in the recov-
ered AST compared to the AST of the expected file (the “diff”). The advantage
of this approach is that it is objective, and assigns a larger penalty to recover-
ies for which a larger area of the text does not correspond to the expected file,
where structures are nested improperly, or when multiple deviations appear
on what would be a single line of pretty-printed code. Furthermore, using
this approach the comparison can be automated, which makes it feasible to
apply to larger test sets.

The scales for the figures we show are calibrated such that a “small diff”
(1–10 lines of abstract syntax) roughly corresponds to the good qualification
with a one or two line change in the concrete syntax source code, and a “large
diff” (> 10 lines) corresponds to a poor qualification. After a selection of
recovery techniques and recovery rule sets, we show both metrics together in
a comprehensive benchmark in Section 6.9.2.

Performance Measuring

To compare the performance of the presented recovery technique under dif-
ferent configurations, we measure the additional time spent for error recovery.
That is, we compute the extra time it takes to recover from one or more errors
(the recovery time) by subtracting the parse time of the correct file from the
parse time of the incorrect file.

To evaluate the scalability of the technique, we compare the parse times for
erroneous and correct files of different size in the interval 1000–7000 LOC.

For all performance measures included in this chapter, an average, collected
after several runs, is used. All measuring is done on a “pre-heated” JVM
running on a laptop with an Intel(R) Core(TM) 2 Duo CPU P8600, 2.40GHz
processor, 4 GB Memory.

6.9.2 Experiments

There are a large number of configurations to consider in evaluating the pre-
sented approach: combinations of languages, recovery rule sets, and recov-
ery techniques. In order to limit the size of the presented results, we first
concentrate on one language and experiment with different configuration of
recovery rule sets and recovery techniques. For these initial experiments we

166

W C
C

O
W

C
W

C
O

0
20
40
60
80

100

Quality (% of Files)

No diff (0)
Small diff (0–10)
Large diff (> 10)
Failed

W C
C

O
W

C
W

C
O

0
20
40
60
80

100
Performance (% of Files)

0–100 ms
100–500 ms
500–1000 ms
> 1000 ms
Failed

Figure 6.23 Quality and performance (recovery times) using a permissive grammar
with different recovery rule sets for Stratego-Java. W - Water, C - Insertion of
closing brackets, O - Insertion of opening brackets.

use the Stratego-Java language – a fairly complex language embedding. After
selecting an effective configuration, we perform additional experiments with
other languages.

Selecting a Recovery Rule Set

In this experiment we focus on selecting the most effective recovery rule set
for a permissive grammar with respect to quality and performance. For the
permissive grammars approach of Section 6.4, there are three recovery rule
sets that we evaluate in isolation and in combination – Water (W), insertion
of Closing brackets (C), and insertion of Open brackets (O). Results from the ex-
periment are shown in Figure 6.23. The figure includes results for W, C, CO,
WC and WCO for a Stratego-Java grammar, where PG is used in combination
with region selection, described in Section 6.7. The remaining combinations,
O and WO, were excluded since it is arguably more important to insert closing
brackets than to insert open brackets in an interactive editing scenario.

The results show that the insertion of closing brackets (C) and the applica-
tion of water rules (W) both contribute to the quality of a recovery. Combined
together (WC) they further improve recovery results. The insertion of open-
ing brackets (O), on the other hand, does not appear to have a large positive
effect on the recovery quality, which follows from comparing C to CO, and
WC to WCO. Moreover, the insertion rules for opening brackets prove to be
costly with respect to performance. We conclude that WC seems to be the best
trade off between Quality and Performance. In this experiment we only set
a limit on the number of lines (75) that were inspected during backtracking.
The performance diagram shows that this leads to objectionable parse times
in certain cases (13% > 1.0 second for WC). For these cases, a practical im-

Chapter 6. Error Recovery for Generated Modular Language Environments 167

RR PG
RR

-P
G

RR
-B

P-
PG

0
20
40
60
80

100

Quality (% of Files)

No diff (0)
Small diff (0–10)
Large diff (> 10)
Failed

RR PG
RR

-P
G

RR
-B

P-
PG

0
20
40
60
80

100
Performance (% of Files)

0–100 ms
100–500 ms
500–1000 ms
> 1000 ms
Failed

Figure 6.24 Quality and performance (recovery times) using combinations of tech-
niques for Stratego-Java. RR - Regional recovery, PG - Permissive grammars, BP
- Bridge parsing.

plementation would opt for an inferior recovery result obtained by applying
a fallback strategy (region skipping in our approach). We apply this strategy
in the remainder of this section, setting a time limit of 500 milliseconds on the
time spent applying recovery rules.

Selecting Recovery Techniques

In this experiment, we focus on selecting the best parser configuration com-
bining the recovery techniques presented in this chapter: the permissive gram-
mars and backtracking approach of Section 6.4 and 6.5 (PG), regional recovery
of Section 6.7 (RR), and bridge parsing of Section 6.6 (BP). We use the WC re-
covery rule set of Section 6.9.2. and the Stratego-Java test set. We first applied
the techniques in isolation: first regional recovery by skipping regions (RR),
and then parsing with permissive grammars (PG). Bridge parsing is not eval-
uated separately, since it has a limited application scope and only works as
a supplementary method. We then evaluate the approaches together: first
parsing with both regional recovery and permissive grammars (RR-PG), and
then the combination of all three techniques together (RR-BP-PG). The results
from the experiment are shown in Figure 6.24.

As shown in the Performance part of Figure 6.24, all techniques give rea-
sonable performance. Consequently, we focus on quality to find the best com-
bination. Considering the Quality part of Figure 6.24 and the results of PG,
we see that it has the largest number of failed recoveries (22%), but regard-
less of this fact it still leads to reasonable recoveries (< 10 diff lines) in the
majority of cases (73%). For regional recovery (RR), the situation is exactly

168

the opposite. As expected, skipping a whole region in most cases does not
lead to the optimal recovery. However, the skipping technique does provide
a robust mechanism, leading to a successful parse in most cases (90%). Com-
bining both techniques (RR-PG), improves the robustness (99%), as well as the
precision (76% small or no diff) compared to both individual techniques.

Interestingly, Figure 6.24 shows little beneficial effects of the bridge parsing
method (BP). There is a strong use case for bridge parsing, as it can pick the
most likely recovery in case of a syntax error that affects scoping structures,
but it is most effective for programs that use deep nesting of blocks. These
are relatively rare in Stratego-Java programs. Still, the approach shows no
harmful effects. For other languages its positive effects tend to be more pro-
nounced, as we have shown in [de Jonge et al., 2009]. In this previous study
a test set with more focus on scope errors is used, while in this study we use
a test set where this kind of error is not so dominant. Unsurprisingly, in this
evaluation the cases where the bridge parser contributes to a better recovery
are cases where the region selection technique does not detect the erroneous
scope as precisely on its own.

Overall benchmark

As an overall benchmark, for this experiment we compare the quality of our
techniques to the parser used by Eclipse’s Java Development Tools (JDT). It
should be noted that, while our approach uses fully automatically derived re-
covery specifications, the JDT parser in contrast, uses specialized, handwritten
recovery rules and methods. We use the JDT parser with statement-level re-
covery enabled, following [Kuhn and Thomann, 2006]. In case the JDT parser
is unable to recover the entire body of a method, Eclipse uses a secondary
parsing approach that analyzes these method bodies for the purpose of con-
tent completion. Because of its specialized nature, we have not included it in
our experiments. Figure 6.25 shows the quality results acquired for the Java
test set, applying the criteria of Pennello and DeRemer [1978] and using diff
counts. To ensure that all the results are obtained in a reasonable time span,
we set a parse time limit of 1 second.

The results show that the SGLR recovery, using different steps and gran-
ularity, is in particular successful in avoiding large diffs, thereby providing
more precise recoveries compared to the JDT parser. We conclude that our
automatically derived recovery technique is at least on par with practical stan-
dards.

Cross-language quality and performance

In this experiment we test the applicability of our approach to different lan-
guages, using the RR-BP-PG configuration and the WC rule set. For simplicity
and to ensure a clear cross-language comparison, we focus only on syntax er-
rors that do not require manual reconstruction of the expected result, i.e.,
all syntax error categories except Incomplete construct and Broken context (as
described in Section 6.9.1). This allows for a fully automated comparison
of erroneous and intended parser output. The results of the experiment are

Chapter 6. Error Recovery for Generated Modular Language Environments 169

JD
T

RR
-P

G
RR

-B
P-

PG

0
20
40
60
80

100
%

of
Fi

le
s

Quality (diffs)

No diff (0)
Small diff (0–10)
Large diff (> 10)
Failed

JD
T

RR
-P

G
RR

-B
P-

PG

0
20
40
60
80

100

%
of

Fi
le

s

Quality (manual assessment)

Excellent
Good
Poor
Failed

Figure 6.25 Quality of our approach compared to JDT. RR - Regional recovery,
PG - Permissive grammars, BP - Bridge parsing, JDT - Java Developer Toolkit.

shown in Figure 6.26. The figure shows good results and performance across
the different languages. From the diagram it follows that the quality of the
recoveries varies for the different test sets. More specifically, the recoveries for
Java-SQL, in general, are better than the ones for Stratego-Java. Differences
like these are both hard to explain and predict, and depend on the charac-
teristics of a particular language, or language combination, as well as the test
programs used.

Performance and Scalability

In this experiment we focus on the performance of our approach. We want to
study scalability and the potential performance drawbacks of adding recovery
rules to a grammar, i.e., the effect of increasing the size of the grammar. We
use the Stratego-Java language throughout this experiment with the RR-BP-
PG recovery configuration. To test scalability, we construct a test set consisting
of files of different size in the interval 1000–7000 LOC, obtained by duplicating
500-line fragments from a base file in the Stratego-Java test set. For each test
file, the same number of syntax errors are added manually, scattered in such
a way that clustering of errors does not occur. By parsing erroneous input of
varying size we can observe the time complexity of the parser. We measure
parse times as a function of input size, both for syntactically correct files and
files with syntax errors. The results, shown as a plot in Figure 6.27, show that
parse times increase linearly with the size of the input, both for correct and
for incorrect files. Furthermore, the extra time required to recover from an
error (recovery time) is independent of the file size, which follows from the
fact that both lines in the figure have the same coefficient.

170

Ja
va

St
r.-

Ja
va

Ja
va

-S
Q

L
W

eb
D

SL

0
20
40
60
80

100

Quality (% of Files)

No diff (0)
Small diff (0–10)
Large diff (> 10)
Failed

Ja
va

St
r.-

Ja
va

Ja
va

-S
Q

L
W

eb
D

SL

0
20
40
60
80

100
Performance (% of Files)

0–100 ms
100–500 ms
500–1000 ms
> 1000 ms
Failed

Figure 6.26 Quality and performance (recovery times) for different languages.

0 2,000 4,000 6,000
0

1,000

2,000

3,000

LOC

Pa
rs

e
ti

m
e

(m
s)

5 Errors (RR-BP-PG)
0 Errors (RR-BP-PG)
0 Errors (Standard)

Figure 6.27 Parse times for files of different length with and without errors.

As an additional experiment we study the performance drawbacks in the
increased size of a permissive grammar. The extra recovery productions
added to a grammar to make it more permissive also increase the size of
that grammar, which may negatively affect parse times of syntactically cor-
rect inputs. We measure this effect by comparing parse times of the syntac-
tically correct files in the test set, using the standard grammar and the WC
permissive grammar. The results show that the permissive grammar linearly
increases parse times of syntactically correct files with a factor of about 1.15.
The effect of modifying the parser implementation to support backtracking
was also measured, but no performance decrease was found. We consider
the small negative performance effect on parsing syntactically correct files ac-

Chapter 6. Error Recovery for Generated Modular Language Environments 171

ceptable since it does not significantly affect the user experience for files of
reasonable size.

Content Completion

Error recovery helps to provide editor services on erroneous input. Especially
challenging is the content completion service, which almost exclusively tar-
gets incomplete programs. In Section 6.8.5 we discussed the strengths and
limitations of our current approach with respect to context completion and
introduced special completion rules to overcome these limitations. In this sec-
tion we evaluate how well the current approach (water and insertion rules)
serve the purpose of content completion, and how the completion rules im-
prove on this.

We evaluated completion recovery on a set of 314 test cases that simulate
the scenario of a programmer triggering the context completion service. Ac-
curate completion suggestions require that the syntactic context, the tree node
where completion is requested, is available in the recovered tree. To evaluate
the applicability with respect to content completion, we distinguish between
recoveries that preserve the syntactic context required for content completion
and those that do not.

Figure 6.28 shows the results for our recovery technique with and without
the use of completion recovery. Using the original approach (with the WC
rule set), the syntactic context was preserved in 77 percent of the cases, which
shows that the recovery approach is useful for content completion, but is
prone to unsatisfactory recoveries in certain cases. Furthermore, recovering
large incomplete constructs can be inefficient since it requires many water
and insertion rule applications.

Both problems are addressed by the completion recovery technique, which
is specifically designed to handle syntax errors that involve incomplete lan-
guage constructs. Figure 6.28 shows the results for the completion recovery
strategy of Section 6.8.5, using a permissive grammar with the WC rule set
and completion rules. Using this strategy, the syntactic context is preserved
in all cases, without noticeable time overhead. The low recovery times are a
consequence of the (adapted) runtime support that exploits the fact that the
cursor location is part of the erroneous construct.

A disadvantage of the completion rules is that they significantly increase
the size of the grammar, which can negatively affect the parsing performance
for syntactically correct inputs. We compared parse times of syntactically cor-
rect inputs for the WC/Completion grammar with parse times for the WC
grammar, and measured an overhead factor of 1.2. Given that completion
rules are highly effective and essential for the content completion functional-
ity, this overhead seems acceptable. For normal editing scenarios, the com-
pletion rules can also be applied as an additional recovery mechanism that
is effective only at the cursor location, although we have not focused on this
capability in the experiments in this section.

172

W
C

C
om

pl
et

io
n0

20
40
60
80

100
%

of
Fi

le
s

Context Preservation

Context
No context

W
C

C
om

pl
et

io
n0

20
40
60
80

100

%
of

Fi
le

s

Performance

0–100 ms
100–500 ms
500–1000 ms
> 1000 ms

Figure 6.28 Context preservation and performance (recovery times) of the
Stratego-Java grammar extended with completion rules (Completion) and ex-
tended with recovery rules (WC).

6.9.3 Summary

In this section we evaluated the quality and performance of different rule
sets for permissive grammars, and different configurations for parsing with
permissive grammars, region recovery, and bridge parsing. Through exper-
imental evaluation we found that the WC rule set provides the best balance
in quality and performance. The three techniques each have their merits in
isolation, and work best in combination. Through additional experiments we
showed that the recovery quality and performance hold up to the standard
set by the JDT, that our approach is scalable, and that it works across multiple
languages. In addition, we showed its effectiveness for content completion.

6.10 R E L AT E D W O R K

There are several different forms of error recovery techniques for LR pars-
ing [Degano and Priami, 1995]. These techniques can be divided in correcting
and non-correcting techniques. The most common non-correcting technique is
panic mode. On detection of an error, the input is discarded until a synchro-
nization token is reached. Then, states are popped from the stack until the
state at the top enables the resumption of the parsing process. Our layout-
sensitive regional recovery algorithm can be used in a similar fashion, but
selects discardable regions based on layout.

Correcting recovery methods for LR parsers typically attempt to insert or
delete tokens nearby the location of an error, until parsing can resume. Suc-
cessful recovery mechanisms often combine more than one technique [De-

Chapter 6. Error Recovery for Generated Modular Language Environments 173

gano and Priami, 1995]. For example, panic mode is often used as a fall back
method if correction attempts fail.

Burke and Fisher [1987] present a correcting method based on three phases
of recovery. The first phase looks for simple correction by the insertion or
deletion of a single token. If this does not lead to a recovery, one or more open
scopes are closed. The last phase consists of discarding tokens that surround
the parse failure location. In our work we take indentation into account, for
the regional recovery technique and for scope recovery using bridge parsing.
In addition, by starting with region selection, the performance as well as the
quality of the permissive grammars approach recovery is improved.

Regional error recovery methods [Lévy, 1971; Mauney and Fischer, 1988;
Pai and Kieburtz, 1980] select a region that encloses the point of detection of
an error. Typically, these regions are selected based on nearby marker tokens
(also called fiducial tokens [Pai and Kieburtz, 1980]), which are language-
dependent. In our approach, we assign regions based on layout instead.
Layout-sensitive regional recovery requires no language-specific configura-
tion, and we showed it to be effective for a variety of languages. Similar to
the fiducial tokens approach, it depends on the assumption that languages
have recognizable (token or layout) structures that serve for the identification
of regions.

The LALR Parser Generator (LPG) [Charles, 1991] is incorporated into
IMP [Charles et al., 2007] and is used as a basis for the Eclipse JDT parser.
LPG can derive recovery behavior from a grammar, and supports recovery
rules in the grammar and through semantic actions. Similar to our approach,
LPG detects scopes in grammars. However, unlike our approach, it does not
take indentation into account for scope recovery.

6.10.1 Recovery for Composable Languages

Using SGLR parsing, our approach can be used to parse languages with a
complex lexical syntax and composed languages. In related work, only a
study by Valkering [2007], based on substring parsing [Rekers and Koorn,
1991], offered a partial approach to error recovery with SGLR parsing. To
report syntactic errors Valkering would inspect the stack of the parser to de-
termine the possible strings that can occur at that point. Providing good
feedback this way is non-trivial since scannerless parsing does not employ
tokens; often it is only possible to report a set of expected characters instead.
Furthermore, these error reports are still biased with respect to the location of
errors; because of the scannerless, generalized nature of the parser, the point
of failure rarely is a good indication of the actual location of a syntactic error.
Using substring parsing and artificial reduce actions, Valkering’s approach
could construct a set of partial, often ambiguous, parse trees, whereas our
approach constructs a single, well-formed parse tree.

Lavie and Tomita [1993] developed GLR*, a noise skipping algorithm for
context-free grammars. Based on traditional GLR with a scanner, their parser
determines the maximal subset of all possible interpretations of a file by sys-

174

tematically skipping selected tokens. The parse result with the fewest skipped
words is then used as the preferred interpretation. In principle, the GLR* al-
gorithm could be adapted to be scannerless, skipping characters rather than
tokens. However, doing so would lead to an explosion in the number of inter-
pretations. In our approach, we restrict these by using backtracking to only
selectively consider the alternative interpretations, and using water recovery
rules that skip over chunks of characters. Furthermore, our approach sup-
ports insertions in addition to discarding noise and provides more extensive
support for reporting errors.

Composed languages are also supported by parsing expression grammars
(PEGs) [Ford, 2002]. PEGs lack the disambiguation facilities [Visser, 1997c]
that SDF provides for SGLR. Instead, they use greedy matching and enforce
an explicit ordering of productions. To our knowledge, no automated form
of error recovery has been defined for PEGs. However, existing work on
error recovery using parser combinators [Swierstra and Duponcheel, 1996]
may be a promising direction for recovery in PEGs. Furthermore, based on
the ordering property of PEGS, a “catch all” clause is sometimes added to a
grammar, which is used if no other production succeeds. Such a clause can
skip erroneous content up to a specific point (such as a newline) but does not
offer the flexibility of our approach.

6.10.2 IDE support for Composite Languages

We integrated our recovery approach into the Spoofax language development
environment (Chapter 4). A related project, also based on SDF and SGLR, is
the Meta-Environment [Klint, 1993; van den Brand et al., 2001]. It currently
does not employ interactive parsing, and only parses files after a “save” action
from the user. Using the traditional SGLR implementation, it also provides
no error recovery.

Another language development environment is MontiCore [Krahn et al.,
2007, 2008], which uses uses traditional LL(k) parsing. As such, MontiCore
offers only limited support for language composition and modular definition
of languages. Combining grammars can cause conflicts at the context-free
or lexical grammar level. For example, any keyword introduced in one part
of the language is automatically recognized by the scanner as a keyword in
another part. MontiCore supports a restricted form of embedded languages
through run-time switching to a different scanner and parser for certain to-
kens. Using the standard error recovery mechanism of ANTLR, it can provide
error recovery for the constituent languages. However, recovery from errors
at the edges of the embedded fragments (such as missing quotation brackets),
is more difficult using this approach. This issue is not addressed in the pa-
pers on MontiCore [Krahn et al., 2007, 2008]. In contrast to MontiCore, our
approach is based on scannerless generalized-LR parsing, which supports the
full set of context-free grammars, and allows composition of grammars with-
out any restrictions.

Chapter 6. Error Recovery for Generated Modular Language Environments 175

6.10.3 Island Grammars

The basic principles of our permissive grammars and bridge parsing are based
on the water productions from island grammars. Island grammars [van Deur-
sen and Kuipers, 1999; Moonen, 2001] have traditionally been used for differ-
ent reverse and re-engineering tasks. For cases where a baseline grammar is
available (i.e., a complete grammar for some dialect of a legacy language),
Klusener and Lämmel [2003] present an approach of deriving tolerant gram-
mars. Based on island grammars, these are partial grammars that contain only
a subset of the baseline grammar’s productions, and are more permissive in
nature. Unlike our permissive grammars, tolerant grammars are not aimed
at application in an interactive environment. They do not support the notion
of reporting errors, and, like parsing with GLR*, are limited to skipping con-
tent. Our approach supports recovery rules that insert missing literals and
provides an extended set of error reporting capabilities.

More recently, island grammars have also been applied to parse compos-
ite languages. Synytskyy et al. [2003] composed island grammars for mul-
tiple languages to parse only the interesting bits of an HTML file (e.g., Ja-
vaScript fragments and forms), while skipping over the remaining parts. In
contrast, we focus on composite languages constructed from complete con-
stituent grammars. From these grammars we construct permissive grammars
that support tolerant parsing for complete, composed languages.

6.11 C O N C L U S I O N

Scannerless, generalized parsers support the full set of context-free grammars,
which is closed under composition. With a grammar formalism such as SDF,
they can be used for declarative specification and composition of syntax def-
initions. Error recovery for scannerless, generalized parsers has previously
been identified as an open issue. In this chapter, we presented a flexible,
language-independent approach to error recovery to resolve this issue.

We presented four techniques for error recovery. First, permissive gram-
mars, to relax grammars with recovery rules so that strings can be parsed that
are syntactically incorrect according to the original grammar. Second, back-
tracking, to efficiently parse files without syntax errors and to gracefully cope
with errors locally. Third, bridge parsing, to improve the recoveries of scoping
constructs by taking indentation usage into account. Fourth, region recovery,
to identify regions of syntactically incorrect code, thereby constraining the
search space of backtracking and providing a fallback recovery strategy. We
evaluated our approach using a set of existing, non-trivial grammars, showing
that the techniques work best when used together, and that they lead to low
performance overhead and good or excellent recovery quality in a majority of
the cases.

Acknowledgments This research was supported by NWO/JACQUARD
projects 612.063.512, TFA: Transformations for Abstractions, and 638.001.610,
MoDSE: Model-Driven Software Evolution. We thank Karl Trygve Kalleberg,

176

whose Java-based SGLR implementation has been invaluable for this work,
and Mark van den Brand, Martin Bravenboer, Giorgios Rob Economopoulos,
Jurgen Vinju, and the rest of the SDF/SGLR team for their work on SDF.

Chapter 6. Error Recovery for Generated Modular Language Environments 177

178

7
Interactive Disambiguation of Meta
Programs with Concrete Object Syntax

A B S T R A C T

In meta-programming with concrete object syntax, meta programs can be
written using the concrete syntax of manipulated programs. Quotations of
concrete syntax fragments and anti-quotations for meta-level expressions and
variables are used to manipulate the abstract representation of programs.
These small, isolated fragments are often ambiguous and must be explic-
itly disambiguated using quotation tags or types, using names from the non-
terminals of the object language syntax. Discoverability of these names has
been an open issue, as they depend on the (grammar) implementation and
are not part of the concrete syntax of a language. Based on advances in inter-
active development environments, we introduce interactive disambiguation to
address this issue, providing meta-programmers with real-time feedback and
proposing quick fixes in case of ambiguities. In this chapter we describe a gen-
eral architecture for automatic generation of mixin grammars that combine
meta languages with object languages, and give an algorithm for determining
disambiguation suggestions for ambiguities in the combined language. The
approach is fully language independent.

7.1 I N T R O D U C T I O N

Meta programs analyze, transform, and generate programs. Examples in-
clude compilers, interpreters, and static analysis tools. Most frequently, meta
programs operate on the abstract syntax of an object language, using a struc-
tured representation of programs rather than a textual representation of their
source code. Using a structured representation ensures well-formedness, en-
ables compositionality of transformations, and makes it easier to support type
safety and hygiene.

In principle, any general purpose programming language can be used as a
host for meta-programming. Abstract syntax can be represented and manip-
ulated using data structures and operations available in the host (meta-)lan-
guage. Unfortunately, the syntactical notation used for these structures and
operations is usually verbose and very different from the concise, well-known
concrete syntax of the object language. Manipulating the abstract syntax
through an API can get tedious, and larger structures are often hard to recog-
nize.

Meta-programming with concrete object syntax as a surface syntax for the
abstract representation is, for a great number of situations, a best of both

179

worlds between a textual and an abstract syntax representation: the meta
program is written using the familiar concrete syntax of the object language,
while at the meta level, all operations are done on a structured representation
of the object program. Concrete object syntax can be syntactically checked
as meta programs are compiled. This technique is now supported by many
meta-programming systems. Examples include syntax macro systems such as
<bigwig> [Brabrand et al., 2002], code generators such as Jak [Batory et al.,
1998] and Repleo [Arnoldus et al., 2007], and program transformation sys-
tems such as ASF+SDF [van den Brand et al., 2002], Meta-AspectJ [Huang
et al., 2008], Rascal [Klint et al., 2009], Stratego/XT [Bravenboer et al., 2008],
and TXL [Cordy et al., 1991]. Visser [2002] describes a general architecture
for introducing concrete syntax for any object language into any meta lan-
guage. The approach employs modular syntax definition in SDF and Scan-
nerless Generalized-LR (SGLR) parsing for defining the syntax and parsing
the combined meta and object language [Bravenboer and Visser, 2004; Visser,
1997c].

A prevailing problem with embedding concrete object syntax inside a meta-
language is that the syntax of the combined meta-and-object language is usu-
ally highly ambiguous when the embedding employs a single pair of quota-
tion and anti-quotation symbols. For example, a quoted Java code fragment
|[i = 2]| can either be an assignment expression, part of a local variable
declaration, or even an annotation element initializer.

Two approaches have been proposed to address ambiguity in meta pro-
grams, each with their own trade offs and limitations. Perhaps the most
straightforward approach is to use tagged quotation and anti-quotation sym-
bols, e.g. writing Expr |[i = 2]| using the tag Expr to indicate that the
quotation contains an expression. The other approach is to use type in-
formation of the meta-programming language to attempt to select the in-
tended interpretation of a concrete syntax quotation [Bravenboer et al., 2005;
Vinju, 2005]. For example, for an embedding of Java in Java, a statement
Expr assign = |[i = 2]|; can be disambiguated based on the declared
type Expr, while the quotation itself does not have to be explicitly tagged.

Unfortunately, both approaches of disambiguation have their drawbacks.
On the one hand, using explicit tags adds additional syntactic overhead, es-
pecially in cases where the host language is explicitly typed or when the tags
are not strictly needed for disambiguation (e.g., for |[if (c) m();]|). On
the other hand, using type-based disambiguation is inadequate when mul-
tiple possible interpretations are type correct. In those cases tagged quota-
tions [Bravenboer et al., 2005] or heuristic filters [Vinju, 2005] must be used in-
stead. Furthermore, type-based disambiguation is highly dependent on, and
usually tightly coupled to, both the type system of the meta-programming
language and its abstract syntax representation. Adding support for ambigu-
ous quotations and anti-quotations requires rather invasive changes in the
existing type checker or to a type-based preprocessor that disambiguates the
meta program. For many host languages it may not be practical, nor possible,
to modify or extend the type checker.

180

Figure 7.1 Screenshot of a quick fix dropdown menu, listing three possible tags
to disambiguate a Java quotation. The menu can be triggered by clicking on the
error icon shown in the left margin, or by using a keyboard shortcut. Selecting a
suggestion fixes the ambiguity.

A pressing problem that both approaches share is a lack of discoverability
of quotation tags and types. Meta-programmers may be intimately familiar
with the concrete syntax of a language, but may not be well-grounded in the
specific names of non-terminals in the syntax definition and the correspond-
ing tag and type names. Having to know these names adds to the learning
curve of meta-programming. Furthermore, as object languages evolve, or as
additional object languages are added to a meta program, new ambiguities
can be introduced for existing code that has not yet, or insufficiently, been
explicitly disambiguated. Neither of the two approaches provides develop-
ers with adequate feedback if the developer must decide how to fix such an
ambiguity.

In this chapter we propose interactive disambiguation as a complementary ap-
proach to tag-based and type-based disambiguation that addresses the con-
cern of discoverability. Our work builds on advances in interactive develop-
ment environments (IDEs). Modern IDEs aid in discoverability of language
features and APIs by providing features such as context-aware code comple-
tion and quick fixes. Quick fixes provide a facility to quickly fix common
errors by selecting a fix from a list of suggestions. In this chapter we pro-
pose to use quick fixes to present developers a list of candidate type or tag
names for ambiguous concrete syntax fragments, allowing them to selectively
fix problematic ambiguities and quickly discover possible fixes (illustrated in
Figure 7.1).

We describe a general architecture for automatic generation of mixin gram-
mars that combine meta languages with object languages, and give an algo-
rithm for detecting possible fixes for ambiguities in the combined language. It
allows meta-programmers to write untagged quotations and anti-quotations
of concrete object syntax, prompting them with quick fix suggestions only
in case of an ambiguity. Our interactive disambiguation approach is fully
language independent and does not have to be adapted for a specific meta-
programming language or its type system.

Outline We begin this chapter with an introduction of meta-programming
with concrete object syntax. We then show how concrete object language

Chapter 7. Interactive Disambiguation of Concrete Object Syntax 181

action-to-java-method:
|[action $[Id:name] {

$[Statement*:s*]
}

]| →
|[public void $[Id:name]() {

$[Stm*:<statements-to-java> s*]
}

]|

Figure 7.2 A rewrite rule that uses concrete object syntax notation to rewrite a
WebDSL action to a Java method. s∗ is a meta variable containing a list of state-
ments. name refers to an identifier.

syntax can be embedded into meta languages using mixin grammars in Sec-
tion 7.3. In Section 7.4 we describe how interactive disambiguation can be
used to resolve ambiguities in concrete object syntax and give an algorithm to
automatically detect possible fixes. We evaluate our approach in Section 7.5
and discuss applications and related work in Section 7.6. We conclude in
Section 7.7.

7.2 META-PROGRAMMING WITH CONCRETE OBJECT SYNTAX

Meta-programming systems that support concrete object syntax use quotations
of object-level code to match and construct code fragments in the object lan-
guage. Concrete syntax quotations can be parsed at compile-time and trans-
lated to their abstract syntax equivalent [Visser, 2002]. Quotations can include
anti-quotations that escape from the object language code in order to include
variables or expressions from the meta language. As an example, Figure 7.2
shows a Stratego [Bravenboer et al., 2008] rewrite rule that uses quotations
(indicated by |[...]|) and anti-quotations (indicated by $[...]) to rewrite a
WebDSL [Groenewegen et al., 2010] action definition to a Java method.

Ambiguity As the meta language and object language are combined, ambigu-
ities can arise in quotations and anti-quotations. A quotation or anti-quotation
is ambiguous if it can be parsed in more than one way, leading to multiple
possible abstract syntax representations. Ambiguities in quotations can also
occur if the same quoting symbols are used for multiple non-terminals of the
object language. Consider for example Figure 7.3. The quotation on the left
is ambiguous, as it can represent a single class, a class declaration statement,
or a compilation unit, each represented differently in the abstract syntax. The
quotation in the middle makes it explicit that the intended non-terminal is a
compilation unit. The quotation on the right is already unambiguous, because
only complete Java compilation units can include a package declaration, and
does not have to be explicitly disambiguated.

Similar to quotations, anti-quotations can be ambiguous if they can repre-
sent multiple possible non-terminals within the context of a quotation. For
example, in a quotation

|[$[q] class X {}]|

182

|[
public class X {

// ...
}

]|

CompUnit |[
public class X {

// ...
}

]|

|[
package org.generated;
public class X {
// ...

}
]|

Figure 7.3 Quotations of a Java compilation unit. From left to right: an ambiguous
quotation, a quotation that is disambiguated by tagging, and a quotation that is
already unambiguous without tagging.

the escaped variable q could be a modifier of class X, a separate type declara-
tion, etc.

Quotations and anti-quotations can either be explicitly disambiguated us-
ing tagged quoting symbols, as shown in Figure 7.3, or using type informa-
tion from the meta language [Bravenboer et al., 2005; Vinju, 2005]. Both ap-
proaches use names based on the non-terminals in a syntax definition for the
object language. Without loss of generality, we focus on a combination of tag-
based disambiguation with interactive disambiguation in this chapter. Our
implementation is based on Stratego, a largely untyped meta-language, but
we describe how the approach could be used in combination with type-based
disambiguation in Section 7.4.5.

7.3 C O N C R E T E S Y N TA X E M B E D D I N G T E C H N I Q U E S

Some meta-programming systems, such as Jak [Batory et al., 1998] and Meta-
AspectJ [Huang et al., 2008], have been specifically designed for a fixed ob-
ject language. These systems use a carefully handcrafted grammar or parser
for the combined meta and object language. Other systems are more flex-
ible and can be configured for different object languages by combining the
grammar for the meta and object languages, and generating a corresponding
parser using a parser generator. Building flexible meta-programming systems
using traditional parser generators is very difficult, because their grammars
are restricted to LL or LR properties. This means that conflicts arise when the
grammar of the meta language and the object language are combined [Braven-
boer and Visser, 2004], and these must be resolved before the meta-and-object
language parser can be constructed. A further impediment to language com-
position found in traditional parsers is the use of a separate scanner, requiring
the use of a single lexical syntax definition for the combined language.

In previous work, Visser [2002] described a general architecture for in-
troducing concrete syntax for any object language into any meta language,
using modular syntax definition in SDF and SGLR [Bravenboer and Visser,
2004; Visser, 1997c] parsing. SGLR supports the full set of context-free gram-
mars, which is closed under composition. This makes it possible to com-
pose languages simply by combining grammar modules. The combination of
SDF and SGLR also allows the combination of both lexical and context-free

Chapter 7. Interactive Disambiguation of Concrete Object Syntax 183

module Stratego-Java
imports1

Stratego
Java

exports context-free syntax
%% Quotations

"|[" ClassDec "]|" → Term {cons("ToMetaExpr")}
"ClassDec" "|[" ClassDec "]|" → Term {cons("ToMetaExprTagged1")}

"Java:ClassDec" "|[" ClassDec "]|" → Term {cons("ToMetaExprTagged2")}
"|[" BlockStm "]|" → Term {cons("ToMetaExpr")}

"BlockStm" "|[" BlockStm "]|" → Term {cons("ToMetaExprTagged1")}
"Java:BlockStm" "|[" BlockStm "]|" → Term {cons("ToMetaExprTagged2")}

"|[" CompUnit "]|" → Term {cons("ToMetaExpr")}
"CompUnit" "|[" CompUnit "]|" → Term {cons("ToMetaExprTagged1")}

"Java:CompUnit" "|[" CompUnit "]|" → Term {cons("ToMetaExprTagged2")}

%% Anti-quotations
"$[" Term "]" → ClassDec {cons("ToMetaExpr")}
"$[" "ClassDec" ":" Term "]" → ClassDec {cons("ToMetaExprTagged")}
"$[" Term "]" → BlockStm {cons("ToMetaExpr")}
"$[" "BlockStm" ":" Term "]" → BlockStm {cons("ToMetaExprTagged")}
"$[" Term "]" → CompUnit {cons("ToMetaExpr")}
"$[" "CompUnit" ":" Term "]" → CompUnit {cons("ToMetaExprTagged")}

Figure 7.4 A mixin grammar for embedding object language Java into host lan-
guage Stratego. For each “interesting” Java non-terminal, the mixin defines produc-
tions for quoting and anti-quoting. ClassDec, BlockStm, CompUnit are defined by
the Java grammar.

syntax into one formalism, and supports the definition of concrete and ab-
stract syntax together in the same production rules.

Grammar productions in SDF take the form p1...pn → s and specify that
a sequence of strings matching (terminal or non-terminal) symbols p1 to pn
matches the symbol s. Productions can be annotated with a constructor name
n to identify them in the abstract syntax using the {cons(n)} annotation,
where n becomes the name of the abstract syntax tree node.

7.3.1 Mixin Grammars

SDF facilitates language embedding by supporting mixin grammars: a mixin
grammar extends an existing object language grammar with productions for
quotation and anti-quotation. As such, the mixin grammar is where the glu-
ing together of the object and meta languages takes place. Figure 7.4 shows
an excerpt of a mixin grammar that embeds Java into the Stratego program
transformation language.

Quotation productions have the form q1 osort q2 → msort and specify that
a quotation of object-language non-terminal osort, surrounded by (sequences
of) symbols q1 and q2, can be used in place of meta-language non-terminal
msort. We sometimes refer to q1 and q2 collectively as the quoting symbols. In
most of our examples, q1 is |[and q2 is]|, or a variation thereof. By extending

1This example uses plain imports to combine the meta and object languages. To avoid name
clashes between non-terminals of the two grammars, actual mixin grammars use parametrized
imports, so that all symbols are postfixed to make them uniquely named.

184

q1 with a tag, we can declare to the parser which osort to expect inside the
quotation.

As illustrated in Figure 7.4, for quotation productions where q1 is un-
tagged, we use the constructor label ToMetaExpr. For tagged quotations, we
use ToMetaExprTagged1, and ToMetaExprTagged2 for quotations with a lan-
guage prefix in their tag. The two forms of tagged quotations can be used
where untagged quotation would be ambiguous, or when there are multiple
object languages that define the same non-terminal, such as Id.

Anti-quotation productions have the form q1 msort q2 → osort and spec-
ify that an anti-quotation of meta-language non-terminal msort, using quot-
ing symbols q1 and q2, can be used in place of object-language non-terminal
osort. We use the constructor label FromMetaExpr for untagged quotations,
FromMetaExprTagged for tagged quotations. For anti-quotations we do not
include a language prefix as they can only exist in the context of a guest lan-
guage quotation.

Mixin grammars can be used to combine a single object language with a
single meta language, or multiple object languages with a single meta lan-
guage. In turn, object languages may include their own extensions and may
embed other languages. Using nestable quotations and anti-quotations, meta
and object language expressions can be arbitrarily nested.

7.3.2 Assimilation of Concrete Object Syntax in Meta Languages

When a meta program with concrete object syntax is parsed according to a
mixin grammar, the parser produces a hybrid parse tree that combines frag-
ments of meta-language and object-language code. The outer meta-language
parse tree then contains subtrees with parse nodes belonging to the object
language. In turn, these may contain meta-language subtrees, and so on, as
quotations and anti-quotations may be nested. A hybrid parse tree cannot be
directly used in either the meta nor object language front ends, as it does not
correspond to either one language. The tree can be transformed to a regular
parse tree for the meta language through assimilation [Bravenboer and Visser,
2004], a process that translates the object code subtrees in the hybrid parse tree
into data structures of the meta language. Assimilation is essential to support
concrete object syntax in a way that is independent of both the meta- and the
object-language, in the sense that neither front end needs to be changed in
order for the technique to work.

Consider an example of meta-programming using Java as both the meta
language and the object language [Bravenboer et al., 2005]. The abstract syn-
tax representation of the Eclipse JDT can be used to represent Java object
programs. A rewrite rule-based assimilator can be used to translate hybrid
parse trees into pure Java. The rewrite rules translate quoted concrete object
syntax to API calls that construct and operate on the abstract syntax. As a
basic example, the following rule translates a quoted return statement to a
Java expression that constructs a ReturnStatement abstract syntax tree node:

Assimilate : |[return;]| → |[_ast.newReturnStatement()]|

Chapter 7. Interactive Disambiguation of Concrete Object Syntax 185

Similar rules are used to translate other object language constructs to expres-
sions in the meta language. For languages with a fixed, generic representation
of object code, such as term rewriting languages, a more general solution is
possible. The meta-explode tool for Stratego is an example of such a ge-
neric tool. It uses a uniform transformation to translate object code fragments
to Stratego term building and matching operations [Bravenboer and Visser,
2004].

7.3.3 Automatic Generation of Mixin Grammars

Mixin grammars have usually been written by hand in the Stratego setting.
The language engineer selects the subset of non-terminals from the object
language that will be supported in quotations and anti-quotations. By select-
ing only a small set of important non-terminals, the engineer can reduce the
likelihood of ambiguities in meta programs. With the tagged disambiguation
approach, the engineer also decides which productions should receive disam-
biguation tags. It is not uncommon to see abbreviations for common tags,
and the tag naming convention is up to the tastes of the designer of the mixin
grammar. Unfortunately, for meta-programmers who have not yet mastered
the use of a particular embedding, all these well-intended decisions make it
difficult to become fully productive, as the productivity-improving shortcuts
must be learned for each new embedding encountered.

In this chapter we take a generative approach to constructing mixin gram-
mars, even though the disambiguator could be used with, and has been tested
on, hand-written mixin grammars. The principal advantage of the generative
approach is the ease of composition. Given an object language grammar writ-
ten in SDF, we can quickly embed it into Stratego by running a grammar
composition tool. The result provides a consistent and complete mixin gram-
mar – all (anti-)quotations follow a single, predictable style and all necessary
non-terminals are supported. In our experience, hand-written mixins usu-
ally omit some of the lesser-used non-terminals from the object language, as
they require effort to develop and maintain as the object language grammar
evolves. This is a non-issue when the mixin grammar can be derived fully
automatically from the object language grammar.

Our mixin grammar generator automatically constructs a mixin grammar
given a meta and one or more object language grammars, as illustrated in
Figure 7.5. All grammars (meta, object, mixin) are fed into the parser genera-
tor, which produces the final parse table. This table is used by SGLR to parse
the combined meta+object language. In case of ambiguities, the result will
be a parse forest, i.e., a parse tree that compactly incorporates all the possible
parse trees for an input, branching at the points of ambiguities. The forest is
inspected by the disambiguator, and the meta-programmer is presented with
suggestions to iteratively refine the meta program to prune out all sources of
ambiguities. Between each iteration, the meta program is re-parsed.

Selecting non-terminals for quotations and anti-quotations When generating
mixin grammars, it is important to provide a sufficiently large set of quota-

186

Figure 7.5 Architecture for generating a mixin grammar and a parser for the meta
language with an embedding of the object language.

tions and anti-quotations so that each object language construct can be quoted
and anti-quoted. However, as grammars include productions with alterna-
tives and injections, care must be taken to provide a minimal set, to avoid
redundant quoting productions. For instance, given an injection production
ExprName → Expr, any quotation of an ExprName is also a quotation of an
Expr, so a separate ExprName quotation would be superfluous.

The fundamentals of our approach for generating grammars are as follows.
We generate quotation productions for all non-terminals that occur on the
right-hand sides of context-free production rules with a constructor, which
are the productions that contribute a new node to the abstract syntax tree.
For example, we include Expr, occurring in the production

Expr "+" Expr → Expr {left, cons("Plus")}

but not ElemVal, which only occurs at the right-hand side of the injection
productions

Expr → ElemVal
Anno → ElemVal

Conversely, we generate anti-quotation productions for non-terminals in the
left-hand sides of context-free production rules with a constructor. For exam-
ple, given

(Anno|ClassMod)* "enum" Id Interfaces? →
EnumHead {cons("EnumHead")}

we include anti-quotations for Anno, ClassMod, Id, and Interfaces. How-
ever, for an injection Public → ClassMod, we do not introduce a new anti-
quotation for Public.

7.4 I N T E R A C T I V E D I S A M B I G U AT I O N

In this section we describe how ambiguities in concrete object syntax can be
interactively resolved by analyzing ambiguities and providing quick fix sug-
gestions. We describe different classes of ambiguities and give an algorithm

Chapter 7. Interactive Disambiguation of Concrete Object Syntax 187

for automatically determining disambiguation suggestions for a given parse
forest and grammar.

7.4.1 Classes of Ambiguities

At the grammar level, there are a number of different classes of ambiguities.
In this chapter we focus on ambiguities in quotations and anti-quotations.
These ambiguities are inherent to the use of mixin grammars, as languages are
woven together and fragments must be parsed with limited syntactic context.
Disambiguation with tags or types can resolve these ambiguities. Other forms
of ambiguities can be caused by the meta or object language, such as with the
C language that notoriously overloads the * operator for multiplication and
pointer dereference. Such ambiguities must be retained if they are part of the
object language design, otherwise they should be resolved at the grammar
level. Ambiguities can also arise by the combination of the two languages
if the syntax between the meta and object language overlap. These cannot
always be resolved by type-based disambiguation [Vinju, 2005], but can only
be avoided by carefully selecting sensible quoting symbols in such a way that
they do not overlap with the meta language and object language. Ideally,
the symbols are chosen to be aesthetically pleasing characters or character
combinations that never occur in either the object or meta language.

7.4.2 Ambiguity in Quotations

Quotations are ambiguous when they can be parsed in more than one way,
either according to a single object language syntax or according to a combi-
nation of multiple object languages. To illustrate ambiguity suggestions for
quotations, we revisit the class quotation from Figure 7.3:

|[
public class X {

// ...
}

]|

Recall that this fragment could represent a single class, a class declaration
statement, or a compilation unit. In the syntax, these alternatives are defined
by the ClassDec, BlockStm, and CompUnit non-terminals. When faced with
an ambiguous syntax fragment, a generalized parser such as SGLR produces
a parse forest that branches at the point of the ambiguity, containing all pos-
sible subtrees for the ambiguous expression. Figure 7.6 illustrates a parse
forest, with at the top a special “amb” tree node that has the three possible
interpretations as its children. The gist of our technique is to analyze the dif-
ferent possible parse trees, and have the developer select which alternative
they intended.

In the mixin grammar for the embedded Java language (shown in Fig-
ure 7.4), there are three untagged productions that produce the three interpre-
tations of our example. The “tagged” productions of the figure parse the same
object language non-terminal, but include distinguishing tags. These tags

188

Figure 7.6 The parse forest for the quotation |[public class X {}]|.

CompUnit |[
class $[x] {

// ...
}

]|

CompUnit |[
$[x] class Y {
// ...

}
]|

Figure 7.7 Example of a local ambiguity (left) and a non-local ambiguity (right). In
the first only the anti-quotation $[x] is ambiguous, in the other the entire contents
of the quotation is ambiguous.

can be used to disambiguate the example: when one of the tags ClassDec,
BlockStm, or CompUnit is added, there is only one possible interpretation of
the quotation. By providing quick fix suggestions that automatically insert
one of these three tags, meta-programmers can consider the three options
and decide which is the interpretation they intended. In the event that the
fragment could also be parsed using a different object language that happens
to use the same tag names, the prefixed tags such as Java:ClassDec are pro-
posed instead.

7.4.3 Ambiguity in Anti-Quotations

Anti-quotations can be disambiguated much like quotations. However, be-
cause they always occur in the context of a quotation, there is no need for
language-prefixed quoting tags. For anti-quotations we also distinguish lo-
cal ambiguity, where a single anti-quotation can be parsed in multiple ways,
and non-local ambiguity, where a larger area of the quotation can be parsed
in multiple ways. Non-local ambiguities arise as anti-quotations productions
typically reduce to multiple possible non-terminals, whereas quotation pro-
ductions typically reduce to only one, such as Term in Figure 7.4.

Local ambiguity Figure 7.7 (left) shows a local ambiguity. The anti-quotation
$[x] may be interpreted as an identifier or as the signature of the quoted
class. The remainder of the quotation is unambiguous, making it trivial to
identify the cause of the ambiguity in the parse forest. Local ambiguities are
the common case.

Chapter 7. Interactive Disambiguation of Concrete Object Syntax 189

Non-local ambiguity Figure 7.7 (right) shows a non-local ambiguity. For
this example, the entire body of the quotation can be interpreted in multiple
ways: it can be either a class y with modifier x, or a package/import/type
declaration x followed by a class y. For non-local ambiguities it is harder to
identify the cause of the ambiguity, as the quotation expressions are no longer
a direct subtree of the “amb” node as they are in Figure 7.6.

As the cause of non-local ambiguity cannot always be clearly identified,
we provide disambiguation suggestions for all outermost untagged anti-quo-
tations in ambiguous subtrees. In general, these subtrees are small and only
include one anti-quotation, with the leftmost anti-quotation being the cause
of the ambiguity. However, in the worst case multiple disambiguation sug-
gestions are provided for anti-quotations that are not inherently ambiguous.
A future refinement could be to speculatively parse anti-quotations with the
suggested tags in place to filter spurious suggestions. In practice, however,
non-local ambiguities are rare, especially those with multiple untagged anti-
quotations.

Non-local ambiguities normally only occur for anti-quotations as they can
match multiple different non-terminals. Quotations all match the same meta
language non-terminal (Term in Figure 7.4), which means they do not intro-
duce non-local ambiguities.

7.4.4 Automatically Providing Disambiguation Suggestions

In this subsection we describe an algorithm to automatically collect disam-
biguation suggestions, given a (mixin) grammar and a parse forest. The
grammar contains the complete set of productions for all meta-expressions,
i.e. productions for quotations or anti-quotations. These form the candidate
disambiguation suggestions. The parse forest incorporates the possible parse
trees and is used to select the right candidates. We made a prototype imple-
mentation of the algorithm2 that integrates into Spoofax, providing a basis for
interactive disambiguation of arbitrary SDF-based meta and object languages.

Figure 7.8 shows a pseudocode implementation of the disambiguation sug-
gestions algorithm. At the top, the CollectSuggestionsTop function is the
main entry point, which gets the parse forest and grammar as its input and
returns a set of disambiguation suggestions as its output. For each outermost
ambiguous subtree amb, it uses the CollectSuggestions function to find lo-
cal disambiguation suggestions.

The CollectSuggestions function produces a set of disambiguation sug-
gestions by inspecting each subtree of the amb tree node (line 7). For each
branch, it searches for the outermost meta-expressions that are not yet com-
pletely tagged (line 8). For each meta-expression it determines the produc-
tion prod that was used to parse it (line 9), and its left-hand and right-hand
side non-terminals (line 10, 11). For SGLR parse trees, the production is
encoded directly in the tree node, allowing it to be easily extracted. Only
meta-expressions that are a direct child of amb (local ambiguities) and meta-

2Available from http://strategoxt.org/Spoofax/InteractiveDisambiguation/.

190

http://strategoxt.org/Spoofax/InteractiveDisambiguation/

CollectSuggestionsTop(tree, grammar)
1 B Input:
2 tree – the parse tree or forest
3 grammar – the mixin grammar
4 B Output:
5 results – a set of (treenode,production) tuples
6 results← {}
7 foreach outermost subtree amb in tree where amb has the form amb(...)

8 results← results∪ CollectSuggestions(amb, grammar)
9 return results

CollectSuggestions(amb, grammar)
1 B Input:
2 amb – an ambiguous subtree
3 grammar – the mixin grammar
4 B Output:
5 results – a set of (treenode,production) tuples
6 results← {}
7 foreach child subtree branch in amb
8 foreach outermost subtree expr in amb where IsTaggable(expr)
9 prod← the production for expr

10 lsort← the non-terminal at left-hand side of prod
11 rsort← the non-terminal at right-hand side of prod
12 if expr = branch ∨¬IsTagged(prod) then
13 results← results∪ { (expr,prod′)
14 | prod′ ∈ productions of grammar
15 ∧ IsTagged(prod′)
16 ∧ prod′ has the form (q1 lsort q2 → rsort)
17 ∧ prod′ and prod have the same constructor
18 prefix ToMeta or FromMeta }
19 return FilterAmbiguousSuggestions(results)

IsTaggable(t)
1 if t has a FromMetaExpr, ToMetaExpr, or ToMetaExprTagged1constructor
2 then return true
3 else return false

IsTagged(p)
1 if p has a FromMetaExprTagged, ToMetaExprTagged1,
2 or ToMetaExprTagged2 constructor
3 then return true
4 else return false

Figure 7.8 Pseudo-code for collecting suggested quotation symbols.

Chapter 7. Interactive Disambiguation of Concrete Object Syntax 191

FilterAmbiguousSuggestions(suggestions)
1 B Input: suggestions – set of disambiguation suggestions
2 B Output: results – set of non-conflicting disambiguation suggestions
3 return { (prod,expr) | (prod,expr) ∈ suggestions
4 ∧ prod has the form (q1 lsort q2 → rsort)
5 ∧¬∃ (expr′,prod′) ∈ suggestions:
6 prod′ has the form (q1 lsort′ q2 → rsort′) }

Figure 7.9 Filtering ambiguous quotation suggestions.

expression subtrees that do not have any tag (non-local ambiguities) are con-
sidered for suggestions (line 12).3

For the selected meta-expressions, a set of possible disambiguation sug-
gestions is collected (line 13). These suggestions take the form of tagged
meta-expression productions (line 14) that contain the same left-hand and
right-hand side non-terminals as the production prod (line 15). Of course, we
only include quotation productions if the current expression is a quotation,
and anti-quotation productions if it is an anti-quotation (line 16). After all
corresponding suggestions are collected, the complete set is filtered using the
FilterAmbiguousSuggestions function (line 18).

The FilterAmbiguousSuggestions function filters out any suggestions
that are ambiguous with respect to each other. This is useful if two object
languages both match a meta-expression and they use the same quotation tag
X. In those cases, inserting the tag X would not resolve the ambiguity, and a
tag with a language prefix of the form Lang:X should be used instead. The
definition of FilterAmbiguousSuggestions is shown in Figure 7.9. For sug-
gestions with quoting symbols q1,q2 (line 3, 4), it only returns those for which
there is no other suggestion with the same quoting symbols (line 5, 6).

7.4.5 Presentation of Suggestions

In modern IDEs, files are parsed and analyzed with each key stroke, after a
small delay passes. This behavior is essential for providing developers with
rapid feedback, such as inline error markers and quick fix suggestions. Quick
fixes are small program transformations that can be triggered by the developer
in case of a code inconsistency or code smell. Quick fixes are unobtrusive: as
developers write their program, errors or warnings are marked inline, but it
is up to the developer to decide when to address the problems. By using
a keyboard shortcut, or by using the mouse to click on an error marker, a
popup menu is shown with suggested fixes (shown in Figure 7.1). For inter-
active disambiguation, quick fixes allow meta-programmers to write concrete

3A special case is the ToMetaExprTagged1 constructor, used for tagged quotations with-
out a language prefix. Suggestions are only provided for local ambiguities with this constructor.

192

syntax for expressions first, allowing the parser to decide whether or not it is
ambiguous, proposing appropriate quick fixes when necessary.

The CollectSuggestionsTop function is executed each time the result of
parsing the meta program is ambiguous. The quickfix menu is populated
with the results, and any ambiguity can be addressed by adding the tag name
or by inserting the type into the context of the quotation. In order to avoid
spurious suggestions for multiple ambiguities, we only provides suggestions
for the outermost expressions (Collect-Suggestions, line 8), allowing meta-
programmers to incrementally fix any remaining ambiguities.

As each quotation and anti-quotation production has the form
q1 lsort q2 → rsort, it is straightforward to extract the quoting symbols q1,q2
used for a tag-based disambiguation. To avoid cluttering the quick fix menu,
we only show tags without a language prefix, unless only a prefixed tag is
available. Actually inserting tags for a selected quick fix suggestion is a sim-
ple matter of inserting the quoting symbols into the meta program.

For type-based disambiguation, a transformation is required that inserts
the type into the context of the quotation. One approach can be to insert a type
cast: as observed in [Bravenboer et al., 2005], inserting a simple cast is usu-
ally sufficient to allow the type checker to disambiguate a meta-expression.
For example, for an embedding of Java in Java itself, a cast (CompUnit)

|[public class X {}]| is unambiguous. Another approach can be to re-
place or insert types of declarations in the context of an ambiguous quotation.
For example, in Meta-AspectJ [Huang et al., 2008] types of local variables
can be inferred using the infer keyword. If it cannot decide a type deter-
ministically, it uses heuristic rules instead. For instance, a quotation infer
c = `[class X {}]; defaults to type ClassDec while it could also be a
MajCompilationUnit. Using interactive disambiguation, this ambiguity can
be brought to the attention of meta-programmers, so that they can make it ex-
plicit what type they intended to use in these cases, in order to avoid subtle,
hard-to-detect problems.

7.5 E VA L U AT I O N

To evaluate and give further insights into the effectiveness of our approach we
used the grammar generator to create two large embeddings. The first is an
embedding of Java in Stratego, shown in examples throughout this chapter.
We used this generated grammar to parse and disambiguate existing source
files that were based on a handwritten mixin grammar that embedded Java
in Stratego. The second grammar extends the Stratego-Java language with an
additional object language, and is used to evaluate a language evolution sce-
nario that occurs when new object languages or new object language features
are introduced.

We used existing source files from the Dryad Java compiler (described in
Chapter 2) to test our approach. For our experiment we focused on a sub-
set of the sources that only uses Java concrete object syntax quotations. This
includes the full type checker. The files use a total of 55 concrete syntax quo-

Chapter 7. Interactive Disambiguation of Concrete Object Syntax 193

tations of a wide variety of different Java language constructs. Most are small
quotations, but a few contain complete compilation units, used for compila-
tion and for unit testing. The sources of the Dryad Compiler were written
for a hand-written Stratego-Java mixin grammar. Our generated grammar
uses the same quotation and anti-quotation symbols, but supports a wider
selection of included non-terminals and uses consistent names for tags. After
stripping existing tags, all sources could be (ambiguously) parsed using our
generated grammar.

Disambiguation suggestions By following the interactive disambiguation sug-
gestions, we could successfully disambiguate the untagged Dryad Compiler
sources. We encountered no non-local ambiguities. While a code fragment
similar to our example of non-local ambiguity in Section 7.4.3 was included,
it was described using abstract syntax. By translating it to concrete syntax
form and selecting the appropriate suggestions we could also express it un-
ambiguously using concrete syntax.

After adding the disambiguation tags for the generated Stratego-Java gram-
mar, we introduced the WebDSL [Groenewegen et al., 2010] domain-specific
web programming language as an additional object language and re-parsed
the files. WebDSL is a curly-bracket programming language and uses binary
operators very similar to those in Java. This leads to a number of new ambigu-
ities in the source files, as they were not written to disambiguate between Java
and WebDSL. Since both the WebDSL and Java syntax definitions use a non-
terminal named Expr for expressions, even tagged quotations such as Expr |[

$[Expr:x] == $[Expr:y]]| would be a valid quotation for either language.
The quick fixes provided language-prefixed suggestions for these cases and
helped us through this transition process. Still, a future refinement could be
to add an option to apply these operations in batches for this scenario. The
comprehensiveness of the generated grammar paid off for this scenario, as the
grammar includes disambiguation tags with and without language prefixes,
even though the latter are only rarely used.

Generated vs hand-written mixin grammar Compared to the original sources
written for the handwritten Stratego-Java mixin grammar, the revised sources
contain many more disambiguation tags. This is because the generated gram-
mar supports a much wider range of non-terminals in quotations and anti-
quotations. For example, using the hand-written Stratego-Java grammar, a
quotation |[$[Expr:x] = $[Expr:y]]| would be parsed only as an as-
signment expression, while it could also be an annotation element initializer
or part of a variable declaration. Since the latter two are rarely quoted in
meta-programs, the designers of the mixin grammar decided not to include
quotations for those cases. In our generated grammar, such special cases are
included, although we take special care not to include non-terminals from un-
restricted injection productions. This means they need to be disambiguated
using additional tags. Still, using a generated grammar avoids the need for
the expertise and manual labor required for the development of a handwrit-
ten mixin grammar. For users of the grammar it avoids the idiosyncrasies that

194

are common with handwritten mixin grammars. The additional tags can be
avoided by using a complementary disambiguation approach such as type-
based disambiguation. In the future we would also like to investigate runtime
disambiguation for meta programs that are not (fully) typed.

Implementation and performance Runtime efficiency of interactive disambigua-
tion is determined by the efficiency of the interactive disambiguator itself and
by the efficiency of the parser. In the disambiguator implementation we cache
operations such as collecting productions from the grammar for efficiency,
while in the algorithm we described in Section 7.4 we abstract from those opti-
mizations. All in all, the number of computations required at disambiguation
time are rather limited: the disambiguator is a depth-first traversal for each
ambiguous branch, a set of hashtable lookups to find the corresponding pro-
ductions – one per branch – and finally a filtering of the set of suggestions to
eliminate conflicting suggestions suffices. Experience with the prototype tells
us that the performance overhead of the suggestions algorithm almost negli-
gible. The real performance cost of our approach comes from generalized
parsing, which is bounded to cubic time complexity [Johnstone et al., 2004].
Experience from our evaluations on the Java and WebDSL embeddings using
our prototype tells us that the time taken to parse and compute suggestions
are within acceptable bounds for interactive use. A limitation of the current
prototype is that is a stand-alone implementation that has to be manually trig-
gered and does not yet integrate into the standard editors of meta-languages
such as Stratego.

Summary Our quick fixes correctly identified disambiguation suggestions.
They provide language-prefixed suggestions in case of ambiguities between
multiple different object languages. Using a generated grammar saves the
time and effort spent in creating the mixin grammar, and makes it very easy
to extend an embedding with an additional object language. Still, while inter-
active disambiguation makes it much easier to add tags for disambiguation,
the approach works best when used together with a complementary approach
to avoid excessive tagging.

7.6 D I S C U S S I O N A N D R E L AT E D W O R K

There are different options for embedding object language code into a meta
language, including string embedding or interpolation, the use of abstract
syntax, concrete object language syntax, and the use of syntax macros in cases
when the object and meta language are the same. Arguments used when
evaluating one choice over another include the level of well-formedness guar-
anteed, the conciseness and readability of the notation, its suitability for code
generation and pattern matching, the difficulty of implementation. Express-
ing code fragments in the syntax of the object language is generally held to
be the most readable alternative, which places string interpolation, concrete
syntax embeddings and certain syntax macro systems at the top when rating

Chapter 7. Interactive Disambiguation of Concrete Object Syntax 195

for readability. Vinju [2005] gives an overview and shows examples of some
of the different approaches.

String interpolation and template engines String template engines such as
StringTemplate [Parr, 2004] and Xpand [Efftinge et al., 2008] remain a prag-
matic and popular choice for all kinds of code generation. Some program-
ming languages, such PHP and Ruby, come with string interpolation built
in. String-based code generation is particularly common for constructing SQL
queries, as found in database-centric applications. Unfortunately, as string
interpolation is notoriously poor at guaranteeing syntactic well-formedness
of the output, it is a preferred vector for injection attacks aimed at web-based
services [Bravenboer et al., 2010]. Since string interpolation engines always re-
gard their generated product as unstructured text, ambiguities are a non-issue
for this approach.

Using syntax embedding techniques, the well-formedness short-comings of
pure string interpolation can be rectified. StringBorg implements a general ap-
proach for syntax-safe embedding of domain-specific languages into general-
purpose programming languages [Bravenboer et al., 2010]. Repleo [Arnoldus
et al., 2007] is a syntax-safe template engine that generates strings based on a
syntax embedding. Both rely on a parser to guarantee well-formedness of the
embedded code. Similar to our approach, they do this by composing host and
embedded language grammars using SDF and SGLR. A crucial difference is
that they are ultimately only concerned with the lexical structure of the object
program. This simplifies ambiguity handling. When faced with ambiguous
branches in a parse forest, their solution is to consider each branch and if one
of them successfully generates a well-formed string they ignore the remain-
der, under the assumption that they would unparse to the same string. This
assumption holds when the quoting symbols cause no ambiguities between
host and embedded language.

Wachsmuth [2009] and Heidenreich et al. [2009b] describe techniques for
deriving syntax-safe template languages from the grammar of any object lan-
guage. Wachsmuth’s work is founded on natural semantics, and guarantees
the syntactic correctness of all outputs generated from valid templates. The
paper only focuses on the abstract syntax, and does not consider the ambi-
guity problems that arise with a parser implementation. Heidenrich et al.
consider parser generation, but do not employ a generalized parser, which
means they cannot handle ambiguities at parse-time. Their proposed solution
is to help the meta-programmer rule out ambiguities by design (i.e., requiring
some form of explicit tagging always), through interactive refactorings. This
ensures that the combination of meta and object language is unambiguous.

Common to all string interpolation approaches is their focus on code gen-
eration. They may employ parsers, but the abstract representation is not
used for anything but well-formedness checking. This makes the approaches
hardly suitable for meta-programming where structural pattern matching on
object code is required.

196

Concrete object syntax The technique of expressing object code fragments us-
ing concrete syntax tries to obtain the best of all worlds: both readable code,
and a structured representation with well-formedness guarantees. There are
now many meta-programming systems that support meta-programming with
concrete object syntax [Bravenboer et al., 2005; Vinju, 2005]. When manipula-
tion – and not only generation – of object code is desirable, removing all am-
biguities of the quoted object becomes necessary, either by tag- or type-based
disambiguation. Still, keeping the syntactic noise to a minimum is desirable,
and therefore using a minimum of tags is often the goal.

In previous work, we described a general, language-independent approach
for meta-programming with concrete object syntax [Visser, 2002], and applied
it in several case-studies [Bravenboer and Visser, 2004] using tag-based dis-
ambiguation. The approach was further refined to type-based disambigua-
tion [Bravenboer et al., 2005]. In this chapter, we introduce a complemen-
tary, language- and type system-independent approach for interactive disam-
biguation. Our technique reduces the need for tagging the (anti-)quotations
by reducing the need for quotation noise; the programmer need only quote
where absolutely necessary, and is interactively helped to introduce quota-
tion symbols where required. Interactive disambiguation is a complementary
approach to both tag-based and type-based disambiguation, however, in this
chapter we focused on a tag-based approach. While we emphasize interactiv-
ity, it should be noted that the technique does not necessarily require an IDE.
Quotation alternatives can also be displayed as part of the build process and
used with generic text editors that may not interactively parse and analyze
the meta language source code.

Tag- and type-based disambiguation Interactive disambiguation is independent
of the type system of the host language and its interaction with symbols in
the object language. It is highly resilient to changes in the meta-program as
it is edited and works even when meta-programs are not type-correct. The
approach mixes well with tag-based disambiguation: with interactive disam-
biguation, explicit disambiguation tags are required only where the parser
cannot decide otherwise, and the meta-programmer is assisted to only intro-
duce them where necessary.

Interactive disambiguation can also be combined with type-based disam-
biguation. It can assist in cases where type-based disambiguation is inade-
quate, as multiple type-based interpretations are type correct. These cases
particularly arise when combining the technique with type inference, as seen
with Meta-AspectJ [Huang et al., 2008], or when forgoing quoting symbols
that distinguish between the meta and the object language, as observed by
Vinju [2005]. Interactive disambiguation can also assist when programs are
not yet type consistent, providing suggestions for inserting type declarations
or type casts. As meta-programmers are more likely to be more familiar with
the concrete syntax of a language than its abstract syntax, suggestions also
aid the programmer in quickly discovering the types of non-terminals with-
out consulting the grammar or its documentation.

Chapter 7. Interactive Disambiguation of Concrete Object Syntax 197

Importance of good quoting symbols Carefully selecting sensible quoting sym-
bols when mixing the object and meta languages is very important for pre-
venting needless ambiguities. Ideally, the symbols are chosen to be aestheti-
cally pleasing characters or character combinations that never occur in either
the object or meta language. This way ambiguities because of overlap between
the meta and object language are avoided.

Vinju [2005] described how concrete object syntax quotations and anti-
quotations can be used without quoting symbols. As he indicated in his paper,
it is ultimately a matter of taste whether or not this leads to better readability.
He also showed that type-based disambiguation is often inadequate to resolve
ambiguities resulting from unquoted embeddings. To resolve these, he used
a set of heuristic filters. A problem with heuristic filters is that they are of-
ten hard to predict by meta-programmers, making meta programs that rely
on them harder to understand and maintain. In this chapter we have made
a case for using explicit, interactive disambiguation instead. We assist the
meta-programmer in explicitly resolving ambiguities for those cases where
the parser or type checker cannot decide which interpretation was intended.

We have not considered meta-variables in this chapter, e.g. assigning special
(anti-)quotation meaning to certain identifiers, such as e for expressions and
stm for statements. In general, meta-variables are hard to discover for the
tools, and they are error-prone for the user. One common pitfall is for meta-
programmers unfamiliar with a given embedding to accidentally hit a meta-
variable inside their quoted code, without intending to, e.g. |[catch(Excep-
tion e) { ... }]|, where e was intended as an object language variable
but is interpreted as a meta language variable.

Future work Stratego is largely untyped, ruling out type-based disambigua-
tion for our present prototype. A typed variant of Stratego [Lämmel, 2003]
might be a suitable testbed for experiments combining interactive disam-
biguation and type inference. One goal would be to get rid of heuristics,
by letting the programmer interactively, and thus more predictably, resolve
these statically.

On the dynamic side, we have had promising experimental results using
runtime disambiguation, where the decision of the correct interpretation of a
meta-expression is delayed until run-time, when the actual values of meta-
level expressions are known. Based on a static analysis of the meta-program,
it is possible to determine which quotations can safely be disambiguated at
runtime.

While we have discounted meta variables in this chapter, we do not rule
them out. They could be supported with our approach, and be made less
error-prone by letting the IDE highlight meta-variables inside concrete syntax
fragments.

It would be interesting to apply the approach of interactive disambiguation
for applications other than meta-programming. One particular area of interest
is that of pluggable language components, where different parties can create
their own language extensions that can be combined by “end programmers.”

198

Interactive disambiguation could be applied in this area to avoid syntactic
conflicts between different plugins.

7.7 C O N C L U S I O N

Modern IDEs significantly increase the productivity of programmers, by pro-
viding many different kinds of editor services specific to the syntax and se-
mantics of a language. Language workbenches are IDEs that integrate meta-
programming tools and provide a comprehensive, interactive environment
for working with meta-programming languages and for developing program
analyses, transformations, and new languages. Meta-programming languages
can use concrete object syntax to clearly and concisely express object program
fragments. Interactive disambiguation is a technique to help identify and
interpret ambiguities in these fragments, and to semi-automatically disam-
biguate them by inserting disambiguation tag or type names. The technique
relieves meta-programmers from the burden of learning these names for each
embedded language by heart (or by rote), and allows them to be explicit rather
than rely on fixed defaults or heuristics to select the intended interpretation.

Acknowledgments This research was supported by NWO/JACQUARD
projects 612.063.512, TFA: Transformations for Abstractions, and 638.001.610,
MoDSE: Model-Driven Software Evolution. We thank the anonymous review-
ers of SLE 2010 for providing useful feedback on an earlier version of this
chapter.

Chapter 7. Interactive Disambiguation of Concrete Object Syntax 199

200

8
Integrated Language Definition Testing:
Enabling Test-Driven Language
Development

A B S T R A C T

The reliability of compilers, interpreters, and development environments for
programming languages is essential for effective software development and
maintenance. They are often tested only as an afterthought. Languages with
a smaller scope, such as domain-specific languages, often remain untested.
General-purpose testing techniques and test case generation methods fall
short in providing a low-threshold solution for test-driven language develop-
ment. In this chapter we introduce the notion of a language-parametric testing
language (LPTL) that provides a reusable, generic basis for declaratively speci-
fying language definition tests. We integrate the syntax, semantics, and editor
services of a language under test into the LPTL for writing test inputs. This
chapter describes the design of an LPTL and the tool support provided for
it, shows use cases using examples, and describes our implementation in the
form of the Spoofax testing language.

8.1 I N T R O D U C T I O N

Software languages provide linguistic abstractions for a domain of computa-
tion. Tool support provided by compilers, interpreters, and integrated devel-
opment environments (IDEs), allows developers to reason at a certain level
of abstraction, reducing the accidental complexity involved in software de-
velopment (e.g., machine-specific calling conventions and explicit memory
management). Domain-specific languages (DSLs) further increase expressiv-
ity by restricting the scope to a particular application domain. They increase
developer productivity by providing domain-specific notation, analysis, veri-
fication, and optimization.

With their key role in software development, the correct implementation
of languages is fundamental to the reliability of software developed with a
language. Errors in compilers, interpreters, and IDEs for a language can
lead to incorrect execution of correct programs, error messages about cor-
rect programs, or a lack of error messages for incorrect programs. Erroneous
or incomplete language implementations can also hinder understanding and
maintenance of software.

Testing is one of the most important tools for software quality control and
inspires confidence in software [Beck, 2003]. Tests can be used as a basis

201

for an agile, iterative development process by applying test-driven develop-
ment (TDD) [Beck, 2003], they unambiguously communicate requirements,
and they avoid regressions that may occur when new features are introduced
or as an application is refactored [Beizer, 2002; Myers, 2008].

Scripts for automated testing and general-purpose testing tools such as the
xUnit family of frameworks [Hamill, 2004] have been successfully applied
to implementations of general-purpose languages [Goodenough, 1980; Wich-
mann and Ciechanowicz, 1983] and DSLs [Gómez et al., 2001; Strembeck and
Zdun, 2009]. With the successes and challenges of creating such test suites by
hand, there has been considerable research into automatic generation of com-
piler test suites [Boujarwah and Saleh, 1997; Kossatchev and Posypkin, 2005].
These techniques provide an effective solution for thorough black-box test-
ing of complete compilers, by using annotated grammars to generate input
programs.

Despite extensive practical and research experience in testing and test gen-
eration for languages, rather less attention has been paid to supporting lan-
guage engineers in writing tests, and to applying TDD with tools specific
to the domain of language engineering. General-purpose testing techniques,
as supported with xUnit and testing scripts, require significant investment
in infrastructure to cover test cases related to syntax, static semantics, and
editor services, specific for the tested language. They also use isolated test
programs to test particular language aspects, requiring a certain amount of
boilerplate code with each test program (e.g., import headers), and require
users to manually code how to execute the test (parse/compile/run/etc.) and
how to evaluate the result and compare it to an expectation. Tool support
for writing test cases and specifying test conditions is lacking, particularly
for negative test cases where errors are expected. Test generation techniques
are an effective complementary technique for stress testing complete compiler
implementations, but are less effective during the development of a new lan-
guage definition.

In this chapter, we present a novel approach to language definition testing
by introducing the notion of a language-parametric testing language (LPTL). This
language provides a reusable, generic basis for declaratively specifying lan-
guage definition tests. It can be instantiated for a specific language under test
through language embedding: we integrate the syntax, semantics, and editor
services of a language under test into the LPTL for writing test inputs.

For the generic basis of the LPTL, we provide general constructs to con-
figure test modules and to declaratively specify test conditions. Based on
the observable behavior of languages implementations, we selected an open-
ended set of test condition specification constructs. These form the heart of
the testing language, and support writing tests for language syntax, static
semantics, editor services, generated code, and dynamic semantics.

To support language engineers in writing and understanding tests, we
show how full language-specific IDE support can be provided for writing test
cases. The instantiated LPTL provides editor services such as syntax high-

202

lighting, syntax and semantic error marking, and content completion, based
on the definition of the language under test.

Using an LPTL significantly reduces the threshold for language testing,
which is important because such a threshold is often a reason for developers
to forgo testing [Gamma and Beck, 1998]. First, by providing a reusable infra-
structure for language test specifications that facilitates test execution, anal-
ysis, maintenance, and understanding. Second, by providing full language-
specific IDE support for writing tests.

The contributions of this chapter are as follows.

• The design of a generic, declarative test specification language for lan-
guage definition testing.

• A fully language-agnostic approach to language embedding that incor-
porates syntactic, semantic, and editor service aspects of a language
under test.

• The implementation of such a testing language as the Spoofax testing
language1 and a description of its implementation architecture.

Outline We begin this chapter with background on language definitions.
Next, we discuss the design of a language-parametric testing language from
three angles: first from a purely linguistic perspective in Section 8.3, then from
a tool support perspective in Section 8.4, and finally by illustrating use cases
with examples in Section 8.5. Our implementation architecture is described in
Section 8.6. We conclude with related work on language testing approaches
and directions for future work.

8.2 B A C K G R O U N D : L A N G U A G E D E F I N I T I O N S

The development of a compiler for a DSL for a domain comprises many tasks,
ranging from construction of a parser to a semantic analyzer and code gener-
ator. In addition to a compiler, the construction of an integrated development
environment (IDE) is essential, as developers increasingly rely on IDEs to be
productive. Traditionally, a lot of effort was required for each of these tasks.
Parsers, data structures for abstract syntax trees, traversals, transformations,
and so on would be coded by hand for each language. The implementation
of editor services expected from modern IDEs, such as syntax highlighting,
an outline view, reference resolving for code navigation, content completion,
and refactoring, added to this already heavy burden. This meant that a sig-
nificant investment in time and effort was required for the development of a
new language.

Language engineering tools Nowadays there are many tools that support
the various aspects of language engineering, allowing language engineers to

1Distributed as part of Spoofax, available from http://www.spoofax.org/.

Chapter 8. Integrated Language Definition Testing 203

http://www.spoofax.org/

Figure 8.1 Language workbenches can combine language definition (left) and lan-
guage use (right).

write high-level language definitions rather than handwrite every compiler, in-
terpreter and IDE component. Particularly successful are parser generators,
which can generate efficient parsers from declarative syntax definitions. For
semantic aspects of languages, there are numerous meta-programming lan-
guages and frameworks. For the development of IDE support there are also
various tools and frameworks that significantly decrease the implementation
effort.

Language workbenches are a new breed of language development tools
[Fowler, 2005a] that integrate tools for most aspects of language engineering
into a single environment. Language workbenches make the development of
new languages and their IDEs much more efficient, by a) providing full IDE
support for language development tasks and b) integrating the development
of the language compiler/interpreter and its IDE. Examples of language work-
benches include MPS [Voelter and Solomatov, 2010], MontiCore [Krahn et al.,
2008], Xtext [Efftinge and Voelter, 2006], and our own Spoofax (Chapter 4).

Language workbenches allow for an agile development model, as they al-
low developers to use an IDE and to “play” with the language while it is still
under development. Figure 8.1 shows a screenshot illustrating how they can
combine the development of a language with the use of generated editors for
that language. Once a syntax definition has been developed (at the left), they
can generate an editor with basic editor services such as syntax highlighting
and syntax error marking. From there, language engineers can incrementally
and iteratively implement new language components and editor services.

Examples and tests Many new languages start with sketches. Sketches of
example programs or code snippets that solve a particular problem in the
domain of the language. With language workbenches, it is common practice
to maintain a “scratch pad” with some example program that focuses on new
features that are under development. Language engineers can interact with it
in various ways. For example, they can introduce type errors (“does the type
checker catch this?”), control-click on an identifier (“does this hyperlink point
to the right place?”) or generate and run code for the example.

Example programs quickly grow unwieldy, and, as commonly seen with
interactive systems [Myers, 2008], they are often thrown away once they show
satisfactory results. This is a major problem as these test cases are a valuable
investment that simply disappears after testing is completed. The problem re-
sults from the high threshold of setting up tests for languages and their IDE,

204

running tests in an automated fashion, ensuring that the observed behavior
complies with the expectations, and so on. The effort does not compare to
the ease of testing it interactively. Without better tool support, proper testing
remains an afterthought, even in an integrated language engineering environ-
ment such as a language workbench.

8.3 T E S T S P E C I F I C AT I O N L A N G U A G E D E S I G N

In this section we describe the design of a language-parametric testing lan-
guage and show how it can be used to test different aspects of language
definitions. The design of the language is highly intertwined with the tool
support that is provided for it and how users can interact with it. We discuss
those aspects of the language in the next section.

The central goal set out for design of an LPTL is to provide a low-threshold
test specification language that forms the basis for a reusable infrastructure
for testing different languages. The design principles of this language are as
follows:

P1 Provide a language-agnostic framework. The language should provide
a generic, language-agnostic basis that caters for a wide spectrum of
different types of tests.

P2 Maintain implementation independence. The language should empha-
size black-box testing [Myers, 2008], allowing tests to be written early in
the design process, and abstracting over implementation specifics.

P3 Support language-specific instantiation. It should be possible to instan-
tiate the language for a specific language under test, thereby integrating
the two languages and the tool support provided for the two.

P4 Facilitate series of tests with test fixtures. The language should support
test fixtures to specify series of tests with common boilerplate code such
as import headers.

In the remainder of this section we show how these principles can be realized,
and show the design of the Spoofax testing language, our implementation of
an LPTL.

A language-agnostic framework (P1) Key to providing a reusable, language
agnostic framework is providing a generic language that can quote test frag-
ments and can specify conditions to validate for those tests. We realize this
using the following syntax to specify tests:

test description [[
fragment

]] condition*

where description is a string that describes the current test case in human
readable form and fragment is an embedded program or program fragment in

Chapter 8. Integrated Language Definition Testing 205

test Cannot assign an integer to a string [[
module Example

function f() {
var s : String = 1;

}
]] 1 error

Figure 8.2 A basic mobl test case.

the language under test. The condition* elements specify the expectations of
the test case, and control what test is performed for the input fragment.

Figure 8.2 shows an example test case where we test the mobl [Hemel and
Visser, 2011] language, a domain-specific language for mobile applications.
In this example we declare a local variable s of type String and assign an
integer literal value to it. This is a negative test case: a value of type String

would be expected here. The conditions clause of this test case indicates that
exactly one error was expected here, which means that the test case passes.

To ensure the test specification syntax is language agnostic, it cannot have
any specific elements for a particular language. The set of different possible
tests that can be specified must be based on a generic interface for observ-
able behavior commonly supported by languages. Furthermore, the quotation
mechanism cannot be limited to only a single, fixed sequence of characters
such as the double square brackets above, since those may also be in use by
the language under test. In the Spoofax testing language we address this issue
by supporting additional quotation markers such as [[[, [[[[, and variations
with series of "" quotes.

Implementation independence via black-box testing (P2) Black-box tests [Myers,
2008] test the interface rather than the internal workings of a software artifact.
They are independent of the internal workings of a tested artifact or unit and
focus only on its observable behavior (output) given some input. The example
of Figure 8.2 illustrates this principle, as it reveals nor assumes anything about
the implementation of the language under test.

As inputs of a black-box language test we use 1) the quoted fragment of
code, 2) the conditions clause, and 3) selections of code within the quoted
fragment. The first two were illustrated in the example of Figure 8.2. The test
input fragment indicates the input to feed to the language implementation,
and the conditions clause indicates what action to trigger and what check to
perform. In our example, the 1 error clause indicates that the implementa-
tion should perform semantic checking and that only one error is expected.
Other clauses can specify other actions and checks such as syntactic checks,
name resolution, refactoring, and execution. In some cases, they specify user
input such as a name for a rename refactoring or command-line arguments
for an execution test. We give an overview of these facilities at the end of this
section.

For many forms of tests it is useful to specify some form of selection in
the input fragment. For instance, consider Figure 8.3, which shows a content
completion test. The double brackets inside the quotation indicate a selected

206

test basic completion [[
module Example
function get(argument : String) : String {

return [[arg]];
}

]] complete to "argument"

Figure 8.3 A test to verify that the selected identifier arg completes to argument.

part of the program where content completion would be applied. Selections
can indicate identifiers or larger program fragments for tests of features such
as reference resolving, content completion, and refactorings. Some tests use
multiple selections, in particular for reference resolving, where both a name
reference and its declaration can be selected.

Language-specific instantiation (P3) Instantiation of the testing language for
a specific language under test requires that the test suite specifies which lan-
guage to use for its test cases. Optionally tests suites can also specify which
syntactic start symbol they use, e.g. a module, statement, or expression. Based
on this information, it becomes possible to evaluate the test cases by invok-
ing or interpreting the language implementation. To fully realize language-
specific instantiation, the IDE that supports the testing language can also be
adapted to incorporate the syntax and semantics of the tested language, as we
illustrate in the next section.

We organize suites into one or more modules (i.e., files), where each mod-
ule has a series of test cases and its own configuration. For each module we
use headers that indicate their name, what language to use, and what start
symbol to use:

module test-assignments
language Mobl
start symbol Expression

Of these headers, only the language header is compulsory. Once the language
under test is specified, the LPTL and the language under test are composed
together, and quoted test fragments are no longer treated as mere strings but
as structured part of test specifications.

Test fixtures (P4) A common technique in testing frameworks such as the
xUnit [Hamill, 2004] family of frameworks, is to use setup() and tearDown()

methods2 to create test fixtures. These methods respectively initialize and de-
initialize common state for a series of tests. For language testing, the same
principle can be applied. We use setup blocks to specify common elements for
tests.

Consider again our basic example of Figure 8.2. Suppose we want to write
multiple, similar tests for assignments in the same context. This would require
writing the same boilerplate in for each test case: a module, function, and
variable declaration. These commonalities can be factored out using setup

2Note that more recent implementations such as JUnit 4 often use annotations for this func-
tionality.

Chapter 8. Integrated Language Definition Testing 207

language mobl

setup [[
module Example

function f() {
var s : String = "";
[[...]]

}
]]

test Cannot assign an integer to a string [[
s = 1;

]] 1 error

test Can assign a string to a string [[
s = "a string";

]]

Figure 8.4 A testing module with a shared setup block.

blocks, as shown in Figure 8.4. Instead of writing the same boilerplate for
every test case, it suffices to write it only once using the shared setup block.
The contents of the setup block serves as a template for the test cases, where
the [[...]] placeholder is filled in with the contents of each test block.3 The
placeholder is optional: if none is specified, we assume it occurs at the end of
the setup block.

Setup blocks are essentially a purely syntactic, language-agnostic feature,
but they are highly flexible. They can be used to factor out boilerplate code
from individual tests, such as module and import declarations. They can also
be used to declare types, functions and values used in test cases. Much like
with the setup() and tearDown() methods of xUnit, they can also be used to
perform tasks such as database initialization for test cases that execute tested
programs.

Overview We conclude this section with an overview of our test specification
syntax, shown in Figure 8.5. So far we already discussed test configuration,
test cases, and tested fragments. The table also shows the possible condition
clauses for syntactic, static semantic, and dynamic semantics tests, and the
patterns that can be used with some condition clauses. We further illustrate
those elements with a series of examples in Section 8.5.

8.4 T E S T S P E C I F I C AT I O N I N T E R A C T I O N D E S I G N

Tool support is an important factor for productivity with programming lan-
guages. For the domain of testing in particular, good tool support is important
to lower the threshold of testing [Gamma and Beck, 1998]. In this section we
show how tool support in the form of IDE components can be applied to lower

3Note that we overload the quotation brackets to specify anti-quotations for selections and
for placeholders in setup blocks. This design ensures minimal syntactic interference with the
language under test, as language engineers can pick which quotation markers to use (e.g., [[,
[[[, and so on).

208

Configuration
module name Module name name.
language language Use language as the language under test.

start symbol symbol Use syntactic start symbol symbol.

Test cases
test description f c* A test case where f must satisfy conditions c*.

test description e A white-box test case where freeform test condition e
must be satisfied.

setup description f
A setup block for test cases in this module. Can use
[[...]]4 in f for placeholders.

Tested fragments (f)
[[(code | [[code]])*]]4 Partial code fragments in the language under test.

Test conditions (c)

succeeds
Fragment succeeds parsing and has no semantic errors
or warnings (default condition).

fails Fragment has semantic errors or warnings.

parse pattern Fragment parses according to pattern.

n error | n errors Fragment has exactly n semantic error(s).

n warning | n warnings Fragment has exactly n semantic warning(s).

/regex/
Fragment has an error or warning matching regular ex-
pression regex.

resolve(#n)? Successfully resolves the identifier at the (nth) selection.

resolve #n to #m Resolves the identifier in the nth selection to a declara-
tion at the mth selection.

complete(#n)? to x Content completion proposals for the (nth) selection in-
clude a name x.

refactor(#n)? r ((arg))? p
Applies refactoring r with argument string arg accord-
ing to pattern p.

build builder((arg))? p
Builds the fragment using builder builder with argu-
ment arg according to p.

run runner((arg))? p
Executes the fragment using runner runner with argu-
ment arg according to p.

e
Freeform expression e, a predicate specified in the lan-
guage definition language, is satisfied.

Patterns in test conditions (p)
Empty pattern: same as succeeds.

succeeds
Operation (i.e., refactoring, builder, execution) is ex-
pected to be successful.

fails Operation is expected to fail.

to term The result should match a term pattern such as
PropAccess("a","b").

to fragment The result should match a code fragment fragment.

to file file The result should match the contents of file file.

Figure 8.5 Summary of the test specification syntax.

Chapter 8. Integrated Language Definition Testing 209

the threshold to language definition testing and to increase the productivity
of language engineers when editing and running tests.

We propose a combination of four forms of tool support for language def-
inition testing. For editing tests, we propose to aid language engineers by
providing editor services for 1) the generic test specification language, and
2) editor services of the language under test in test fragments. For running
tests, we propose a combination of 3) live evaluation of test cases as they
are edited, and 4) a batch test runner for testing larger test suites. In the re-
mainder of this section we show how these forms of tool support are realized
in the Spoofax testing language and how they can be used. The underlying
implementation aspects are discussed in Section 8.6.

8.4.1 Editor Services for Test Specification

Integrated development environments are a crucial factor in programmer pro-
ductivity [Selby, 2007]. Modern IDEs incorporate many different kinds of edi-
tor services, assisting developers in code understanding and navigation, direct-
ing developers to inconsistent or incomplete areas of code, and even helping
them with editing code by providing automatic indentation, bracket insertion,
and content completion.

Most editor services provided in modern IDEs are language specific, and
can be defined as part of the language definition. The challenge in providing
effective IDE support for language definition testing is in providing language-
specific support for both the testing language and for the embedded language
under test.

Editor services for the generic testing language Editor services for the generic
testing host language are the meat and potatoes for making language engi-
neers more productive with testing. Our implementation provides the full
range of syntactic and semantic editor services for working with the test-
ing language, ranging from syntax highlighting to error marking and content
completion for all elements of Figure 8.5.

Editor services for language under test Rather than treat tested fragments as
an opaque input string, we use editor services of the language under test to
support them as first-class parts of a test specification. Our implementation
provides services such as syntax highlighting, syntax error marking, semantic
error marking, and content completion, as shown in the screenshots of Fig-
ure 8.6a and 8.6b. Note that error markers are only shown for failing test
cases, not for negative test cases where errors are expected (Figure 8.6c).

8.4.2 Running Language Definition Tests

Live evaluation of test cases Live evaluation of test cases as they are edited
ensures that language engineers get the same rapid feedback and editing ex-
perience as they get with “throwaway” programs used to test language defi-

4Alternatively, [[[. . .]]]or [[[[. . .]]]]can be used.

210

(a) Content completion for the language under test.

(b) Online evaluation of tests and error markers.

(c) A passing test case specifying negative test condition.

Figure 8.6 IDE support for test specifications.

nitions. To achieve this effect, our implementation evaluates tests in the back-
ground and shows which tests fail through error and warning markers in the
editor. With this feedback, developers can quickly determine the status of
tests in a testing module. Since some operations may be long-running, we
exclude test cases that depend on building or executing the test from back-
ground execution, and instead focus on tests of the syntax, static semantics,
and transformations defined for a language.

Batch execution To support long-running test cases and larger test suites, we
also provide a batch test runner as described in [Gamma and Beck, 1998]. Such
a test runner is particularly important as a language project evolves and the
number of tests grows substantially and tests are divided across multiple test
modules. Figure 8.7 shows a screenshot of our graphical test runner. The test
runner gives a quick overview of passing and failing tests in different modules
and allows developers to navigate to tests in a language project. Tests can also
be evaluated outside the IDE, for example as part of a continuous integration
setup.

Chapter 8. Integrated Language Definition Testing 211

Figure 8.7 The batch test runner.

8.4.3 Using Integrated Language Definition Testing

Rather than designing a complete new language “on paper,” before its im-
plementation, it is good practice to incrementally introduce new features and
abstractions through a process of evolutionary, iterative design [Fowler, 2005a;
Visser, 2007]. The LPTL approach makes it possible to start a language design
with examples that (eventually) form test cases.

Testing from the point of inception of a language requires that the tested
language implementation artifact is in such a state that it can produce some
form of output for a given input program. Language workbenches such as
Spoofax can generate an executable – and thus testable – language plugin
from only a (partial) syntax definition (as described in Chapter 4). Additional
features, in the form of editor services and static and dynamic semantics,
can then be iteratively and incrementally added. With an LPTL, each new
feature can be tested at at any stage of the development process. This makes
it possible to develop languages in a test-driven fashion, following the rhythm
described in [Beck, 2003]:

1. Write a test case.

2. Watch it fail.

3. Implement the tested feature.

4. Watch all tests succeed.

5. Refactor when necessary and repeat.

Our approach facilitates this process for language engineering by providing
a specialized language testing infrastructure that gives direct feedback at any
stage in this development cycle.

212

Start ::= "module" QId Def*

Def ::= "entity" ID "{" EBD* "}"
| Function
| Stm

EBD ::= ID ":" Type
| Function

Function ::= "function" ID
"(" (FArg ("," FArg)*)? ")"
":" Type "{" Stm* "}"

Stm ::= "var" ID ":" Type "=" Exp ";"
| "var" ID "=" Exp ";"
| Exp "=" Exp ";"
| Exp ";"
| "{" Stm* "}"
| "if" "(" Exp ")" Stm ("else" Stm)?
| "foreach" "(" ID "in" Exp ")" Stm
| "foreach" "(" ID ":" Type "in"

Exp ")" Stm

Exp ::= STRING
| NUMBER
| "null"
| "this"
| Exp "." ID
| ID "(" (NameExp ("," NameExp)*)? ")"

NameExp ::= ID "=" Exp | Exp

FArg ::= ID ":" Type

Type ::= ID | "Collection" "<" Type ">"

QId ::= ID | QId "::" ID

Figure 8.8 A subset of mobl’s syntax, from [Hemel and Visser, 2011].

8.5 L A N G U A G E D E F I N I T I O N T E S T I N G B Y E X A M P L E

In this section we show how different language aspects can be tested through
examples using the mobl language.

Mobl Mobl is a statically typed language and compiles to a combination of
HTML, Javascript, and CSS. Mobl integrates sub-languages for user interface
design, data modeling and querying, scripting, and web services into a single
language. In this chapter we focus on the data modeling language.

An excerpt of the syntax of mobl is shown in Figure 8.8. In mobl, most
files starts with a module header, followed by a list of entity type definitions,
functions, and possibly statements. An example of a mobl module that defines
a single entity type is shown in Figure 8.9. Entities are persistent data types
that are stored in a database and can be retrieved using mobl’s querying API.
We import the tasks::datamodel example module in tests throughout this
section.

Chapter 8. Integrated Language Definition Testing 213

module tasks::datamodel

entity Task {
name : String
date : DateTime

}

Figure 8.9 A mobl definition of a Task data type.

language mobl
start symbol Stm

test Named parameters [[
var e = Task(name="Buy milk");

]] parse succeeds

test ‘true’ is a reserved keyword [[
var true = 1;

]] parse fails

test Test dangling else [[
if (true)
if (true) {}
else {}

]] parse to
IfNoElse(True, If(True, _, _))

test Nested property access [[
v = a.b.c;

]] parse to
Assign("v",
FieldAccess(FieldAccess("a", "b"), "c"))

Figure 8.10 Syntactic tests.

8.5.1 Syntax

The syntax definition forms the heart of the definition of any textual lan-
guage. It incorporates the concrete syntax (keywords etc.) and the abstract
syntax (data structure for analysis and transformations) of a language, and is
generally the first artifact developed with a new language definition. The syn-
tax can be considered separately from the remainder of a language definition,
and can be used to generate a parser and editor with basic syntactic services.
It can also be tested separately from any semantic aspects of the language.

Syntax tests can be used to test newly added language constructs. They
can include various non-trivial tests such as tests for operator precedence,
reserved keywords, language embeddings, or complex lexical syntax such as
the quotation construct of Figure 8.5.

We distinguish two forms of syntax tests. First, there are pure black-box
tests, which test if a code fragment can be parsed yes or no. The first two
examples of Figure 8.10 show positive and negative black-box tests. Next, we
also support syntactic tests that use tree patterns to match against the abstract
syntax produced by the parser for a given fragment. The third and fourth tests
in the figure show examples of such tests.5 These tests are not pure black-box

5We use prefix constructor terms to match against tree patterns, matching against the name
of a tree node and its children. Wildcards are indicated with an underscore.

214

language mobl

setup [[
module tasks
import tasks::datamodel

var todo = Task(name="Create task list");
]]

test Entity types have an all() built-in [[
var all : Collection<Task> = Task.all();

]] succeeds

test Assigning a property to a Num [[
var name : Num = todo.name;

]] 1 error /type/

test Local variable shadowing [[
function f() {

var a : A;
{

var a : A;
}

}
]] 1 error /already defined/

Figure 8.11 Tests for static semantic checks.

tests as they expose something about the implementation of the parser. They
may not rely directly on the internals of the parser, but they still depend
on the technology used. Many parser generators rely on restricted grammar
classes [Kats et al., 2010], placing restrictions on the syntax definition, making
it difficult to produce certain trees such as the left-recursive trees for field
access in Figure 8.10. In Spoofax, these restrictions are not an issue since we
use a generalized-LR parser.

8.5.2 Static Semantic Checks

Static semantic checks in languages play an important role in the reliability of
programs written in that language. With DSLs such as mobl, these checks are
often specific to the domain of the language, and not supported by the target
platform. In mobl’s case, a dynamic language is targeted that performs no
static checks at all.

With tests we can have better confidence in the static checks defined for
a language. Examples are shown in Figure 8.11. We use a setup block6 in
this figure to import the tasks::datamodel module, and to initialize a single
Task for testing. The first test case is a positive test, checking that the built-in
all() accessor returns a collection of tasks. The other tests are negative tests.
For such test cases, it is generally wise to test for a specific error message. We
use regular expressions to catch specific error messages that are expected, e.g.
/type/ to match messages with the substring type.

6Recall that the [[...]] placeholder notation is optional: by default, we assume that the
placeholder is at the end. This default elegantly allows most mobl tests to avoid explicit place-
holders.

Chapter 8. Integrated Language Definition Testing 215

language mobl

setup [[
module navigation
import tasks::datamodel

var example = "Magellan";
]]

test Resolve a shadowing variable [[
function getExample() : String {

var [[example]] = "Columbus";
return [[example]];

}
]] resolve #2 to #1

test Resolve a function call [[
function [[loop]](count : Num) {
[[loop]](count + 1);

}
]] resolve #2 to #1

test Content completion for globals [[
var example2 = [[e]];

]] complete to "example"

test Content completion for queries [[
var example2 = Task.[[a]];

]] complete to "all()"

Figure 8.12 Reference resolving and content completion tests.

8.5.3 Navigation

Modern IDEs provide editor services for navigation and code understanding,
such as reference resolving and content completion. These services are a man-
ifestation of the name analysis that is highly important for the dependability
of a language implementation. Tests for reference resolving and content com-
pletion test not only the user experience in an editor, but also the underlying
name analysis and any other analyses it may depend on.

Figure 8.12 shows examples of tests for reference resolving and content
completion. Note how reference resolving tests can use multiple selected ar-
eas. Our first test case tests variable shadowing, while the second one tests
reference resolving for function calls. For content completion we test comple-
tion for normal local variables, and for built-ins such as the all() accessor.

8.5.4 Transformations and Refactorings

Transformations can be used to create views and for compilation. To test
transformations, we use the notion of a builder. Builders are transformations
that can be triggered by the user, displaying a view or generating code (Sec-
tion 4.4.4). Mobl implements several, for use by both end-programmers and
meta-programmers. The first test case in Figure 8.13 shows an example of a
test for the desugar builder, one of the builders used by the designers of mobl
to inspect the desugared version of a module.

216

language mobl

setup [[
module Example
import tasks::datamodel

]]

test Desugaring adds a type to foreach [[
foreach (t in Task.all()) {
// ...

}
]] build desugar to [[

foreach (t : Task in Task.all()) {
// ...

}
]]

test Rename refactoring [[
var x = 1;
function x(x : Num) : Num {

return [[x]];
}

]] refactor rename("y") to [[
var x = 1;
function x(y : Num) : Num {

return y;
}

]]

Figure 8.13 Tests for transformations and refactorings.

Refactorings are transformations that rely on pre-conditions and post-con-
ditions to perform behavior-preserving transformations [Fowler and Beck,
1999]. With tests, language engineers can gain more confidence about the
transformation performed for a refactoring and its pre- and post-conditions.
The second test case in Figure 8.13 is an example of a refactoring test. The
example tests the rename refactoring with the input string "y" which deter-
mines the new name of the selected identifier. The test condition compares
the output to the expectation, where behavior is only preserved if just the
function parameter x is replaced and not the other x’s.

8.5.5 Code Generation and Execution

The ultimate goal of most language definitions is to generate or interpret code
for execution. Sometimes, languages also generate artifacts for inspection
by the user, such as a graphical view of all entities in a mobl application.
Testing can be used to confirm that exactly the right output is generated for a
particular input, but those tests are often rather fragile: one small change in a
compiler can break a test case even if the program still compiles correctly. It is
more practical to use an external oracle for those tests, such as a compiler or
lint-type checker. Another strategy is to ensure that the program is executable
and to simply run it: execution tests can indirectly serve as tests of generated
code correctness. For execution tests we use the notion of a runner. Similar to
a builder, runners are operations that execute code, through interpretation or
by running a generated program.

Chapter 8. Integrated Language Definition Testing 217

language mobl

setup [[
module runtimetests
import tasks::datamodel

foreach (n in range(0, 10)) {
add(Task(name="Task "+n));

}

function getResult() : Num {
return [[...]];

}
]]

test Compile to HTML/JavaScript/CSS [[
1 + 1

]] build generate-artifacts

test String API [[
"string".indexOf("r")

]] run run-test("getResult") to "2"

test Counting query [[
Task.all().count()

]] run run-test("getResult") to "10"

Figure 8.14 Code generation and execution tests.

Figure 8.14 shows tests for code generation and execution. We use a setup
block to initialize the database by adding new Task instances that can be used
in the tests. In the first test case we have a test that only triggers code gener-
ation, using mobl’s generate-artifacts builder. In this case the builder is
only required to succeed, we do not explicitly check its output. The other test
cases use a runner run-test, which invokes the getResult() function and
returns the result as a string for comparison.

8.5.6 Testing for End-Programmers

So far we have considered testing for meta-programmers. End-programmers
that use a language are generally not interested in testing the syntax or static
semantics of a language. They are, however, interested in the dynamic seman-
tics; writing unit tests for programs written in the language. An LPTL can be
used as a basis for maintaining and running such tests. End-programmers
then get the same language-specific feedback and tooling for writing tests as
meta-programmers, and can use the same testing language for testing multi-
ple DSLs that may be employed in a project.

The LPTL as we designed it is aimed at meta-programmers, and provides
a general platform for testing. For end programmers it can be specialized
for one particular language (eliminating the language header) and for the
purpose of execution tests (simplifying the run clause). Providing specialized
instances of the test specification language is considered future work.

218

language Spoofax-Testing

test Testing a mobl test specification [[[
module test-mobl
language mobl
test Testing mobl [[
module erroneous
// ...

]] 1 error
]]] succeeds

Figure 8.15 Testing the test specification language.

8.5.7 Freeform Tests

The test specification language is open-ended: if there are aspects of a lan-
guage definition that need testing but are not covered by the fixed conditions
in the table of Figure 8.5, freeform test expressions can be used. In the Spoofax
testing language, we use the Stratego language [Bravenboer et al., 2008] to
specify them, as it is also the language used to define semantic aspects of lan-
guage definitions in Spoofax. Freeform expressions can directly interact with
the language implementation to express white-box test cases. For example,
they can test whether an internal function that retrieves all the ancestors in the
inheritance chain of a class works, or they can test that generate-artifacts
correctly writes a .js file to disk.

8.5.8 Self Application

An interesting capability of the testing language is that it can be applied to it-
self. In our implementation of the Spoofax testing language, it can be applied
to any language designed in the language workbench, including instantiations
of the testing language. Figure 8.15 shows an example. Note how we use the
triple-bracket quotation form (i.e., [[[...]]]) in this example, as the testing
language itself uses the normal double brackets. For the outer test specifica-
tion, any selections or setup placeholders should then also be specified using
triple brackets. The inner test specification is free to use double brackets.

8.6 I M P L E M E N TAT I O N

In this section we describe our implementation of an LPTL and the infrastruc-
ture that makes its implementation possible. We implemented the Spoofax
testing language as a language definition plugin for the Spoofax language
workbench. Spoofax itself is, in turn, implemented as a collection of plugins
for the extensible Eclipse IDE platform. Most Spoofax language definitions
consist of a combination of a declarative SDF [Heering et al., 1989; Visser,
1997c] syntax definition and Stratego [Bravenboer et al., 2008] transformation
rules for the semantic aspects of languages, but for this language we also
wrote parts of the testing infrastructure in Java.

Chapter 8. Integrated Language Definition Testing 219

8.6.1 Infrastructure

The Spoofax language workbench provides an environment for developing
and using language definitions. It provides a number of key features that are
essential for the implementation of an LPTL.

A central language registry Spoofax is implemented as an extension of the IDE
Meta-tooling Platform (IMP) [Charles et al., 2009] which provides the notions
of languages and a language registry. The language registry is a component
that maintains a list of all languages that exist in the environment. It also
allows for runtime reflection over the services they provide and any meta-
data that is available for each language, and can be used to instantiate editor
services for them.

Dynamic loading of editor services Spoofax supports dynamic, headless load-
ing of separate language and editor services of the language under test. This
is required for instantiation of these services in the same program instance
(Eclipse environment) but without opening an actual editor for them.

Functional interfaces for editor services Instantiated editor services have a func-
tional interface. This decouples them from APIs that control an editor, and
allows the LPTL to inspect editor service results and filter the list of syntactic
and semantic error markers shown for negative test cases.

Support for a customized parsing stage Most Spoofax plugins use a generated
parser from an SDF definition, but it is also possible to customize the parser
used. This allows the LPTL to dynamically embed a language under test.7

These features are not trivially supported in language workbenches, but there
are other workbenches that support a subset. For instance, where many lan-
guage workbench implementations generate relatively opaque, autonomous
Eclipse plugins, MPS [Voelter and Solomatov, 2010] is an example of a work-
bench with first-class languages and a language registry. Many workbenches
support some level of dynamic loading of services, although their implemen-
tation may be tied to IDE interfaces that may make it hard to instantiate them
in a headless fashion. Functional interfaces for editor services are rare, but
could be implemented for workbenches that generate the service implemen-
tations. MontiCore [Krahn et al., 2008] is an example of a workbench that
applies similar techniques with regard to combining host and embedded lan-
guage parsers.

8.6.2 Syntax and Parsing

Language engineers can instantiate the testing language for any Spoofax lan-
guage that is loaded in the Eclipse environment, either as an Eclipse plugin,
or as a language project in source form. Once the developer specifies which

7Note that even though Spoofax supports generalized parsing and syntax embedding tech-
niques, a different approach is required in this case as the embedding cannot be expressed as a
context-free grammar, as we discuss in Section 8.6.2.

220

Figure 8.16 Parsing the LPTL with the embedded language under test (LUT).

language to test, the syntax of the testing language is instantly specialized
by integrating the syntax of the language under test. This makes it possible
to provide syntactic editor services such as syntax highlighting, and to parse
the file to a single abstract syntax tree that is used in the implementation of
semantic editor services and tests evaluation.

In previous work, we have shown how generalized parsers can be used to
syntactically compose languages [Bravenboer and Visser, 2004]. Generalized
parsers support the full class of context-free grammars, which is closed un-
der embedding. That is, any two context-free grammars can be composed to
form again a context-free grammar. This makes it possible to support mod-
ular syntax definitions and allow for language composition scenarios such as
embedding and extension.

Unfortunately, the embedding as we have defined it for the LPTL is not
context-free. First, because test fragments can only be parsed when their
setup block (context) is taken into consideration. Second, because test frag-
ments are allowed to contain syntax errors, such as spurious closing brackets.
Even when considering syntax error recovery techniques, which use a local or
global search space or token skipping techniques [Degano and Priami, 1995],
the test fragments must be considered in isolation to ensure correct parsing
of the test specification.

As we cannot compose the LPTL parser with that of the language under
test at the level of the syntax definition, we have chosen for a more ad hoc
approach, parsing the LPTL and the language under test in separate stages.
Figure 8.16 illustrates these stages. First, we parse the LPTL using a skeletal
test specification syntax, where every setup and test fragment is parsed as a
lexical string. Second, we parse each setup and test fragment again using the
parser of the language under test. For this, the setup fragment is instantiated
for each test, and also parsed separately. As a third step, we merge the abstract
syntax trees and token streams8 of the skeletal LPTL and of the test cases. The
merged tree and token stream are then used for editor services and to evaluate
the tests in the module.

Our approach makes it possible to directly instantiate the language without
generating a new parser for the instantiated LPTL. Our Java-based scannerless

8Note that Spoofax uses scannerless parsing, but still constructs a token stream after parsing
for editor services, as described in Section 6.8.4.

Chapter 8. Integrated Language Definition Testing 221

generalized-LR (JSGLR) parser is relatively efficient, ensuring good runtime
performance and allowing for interactive use of the Spoofax testing language.
With support for error recovery techniques (described in Chapter 6), JSGLR
also ensures that a valid abstract syntax tree is produced for providing editor
services in case a test module is syntax incorrect (as seen in Figure 8.6a). There
are still opportunities for performance optimizations; e.g. the three stages
could be more tightly integrated and caching could be added for parsing the
test fragments, but so far we have not found the need for this.

8.6.3 Tool Support

The language registry provided by Spoofax and IMP maintains a collection
of all languages supported in the environment, and provides access to fac-
tory classes to instantiate language-specific editor services (e.g. a syntax high-
lighter, content completion service, or code generator). Using the language
registry, and the dynamic editor service loading facilities of Spoofax, it is pos-
sible to access the parser, syntactic start symbols, and a list of editor services
that can be instantiated for a language, given its name. We use the registry
to instantiate these services for editor support in the language under test and
for evaluating tests.

Editor service support in test fragments is provided by delegation to services
of the language under test. An example is content completion support to help
write test cases. The editor services for the testing language simply detect
that they are invoked inside a test fragment, and then delegate the work to
a service of the language under test. The only special cases are the syntax
error marking and semantic error marking service. These produce lists of
errors that must be filtered according to the test expectations (e.g., if an error
is expected, the IDE should not add a red marker for it).

The parser and editor services are transparently loaded on demand once
they are used for a test case. As a result, the editor for a test module is
instantly specialized by simply specifying the name of the language under
test. Further configuration is not required. Test cases are also automatically
re-evaluated in the editor if a language definition is changed.

Test evaluation Tests are evaluated by instantiating the appropriate editor
services for the language under test and applying them to the abstract syn-
tax tree that corresponds to the test input fragment. For example, consider a
reference resolving test such as that of Figure 8.12. To evaluate such a test,
the language registry is used to instantiate services for semantic analysis and
reference resolving. Like all editor services, the reference resolver has a func-
tional interface, which essentially gets an analyzed program and an abstract
syntax tree node of a reference as its input, and returns the declaration ab-
stract syntax tree node. To test it, we give it the analyzed program, obtained
from the analysis service, and the tree node that corresponds to the reference
selected in the test fragment. The result is then compared to the expected
result of the test case.

222

Execution tests often depend on some external executable that runs outside
the IDE and that may even be deployed on another machine. Our implemen-
tation is not specific for a particular runtime system or compiler back end.
Instead, language engineers can define a custom “runner” function that con-
trols how to execute a program in the language. For a language such as mobl,
a JavaScript engine such as Rhino or a browser emulator such as WebDriver
can be used. At the time of writing, we have not yet completed that binding
for mobl yet.

Test evaluation performance Editor services in Spoofax are cached with in-
stantiation, and run in a background thread, ensuring low overhead and near-
instant responsiveness for live test evaluation. Most editor services are very
fast, but long-running tests such as builds or runs are better executed in a
non-interactive fashion. We only run those through the batch test runner of
Section 8.4.2 and display information markers in the editor if the test was
changed after it last ran.

8.7 D I S C U S S I O N A N D R E L AT E D W O R K

Related work on testing of language implementations can be divided into a
number of categories: testing with general-purpose tools, testing with homo-
geneous and heterogeneous language embeddings, and test case generation.

Testing with general-purpose tools Considerable experience exists in the use
of general-purpose testing tools and scripts for tests of language definitions
[Frens and Meneely, 2006; Goodenough, 1980; Gómez et al., 2001; Stodte, 2001;
Malloy et al., 2002]. Sometimes, they take the form of a simple shell script that
builds all files in a directory. In other cases they use JUnit or a related xUnit-
family [Hamill, 2004] testing framework.

The use of these tools introduces a number of challenges when applied
to language definitions. First, a major issue is that a significant investment
in language-specific testing infrastructure must be made to support tests for
different aspects of languages, ranging from syntax to semantics and editor
services. We support a generic, declarative language for testing these aspects.
A second issue is that to make sure tests are considered in isolation, each
test case is generally put in a separate file. Using separate files for test cases
introduces boilerplate code such as import headers. It also makes it harder to
organize tests, requiring conventions for file and directory names. Using test
files specified purely in the tested language also separates test conditions and
expectations from the test program. With an additional investment in effort,
some of these issues can be solved, but only on a per-language basis. We
provide a language-generic solution.

Another limitation of these general testing tools is that they do not provide
specialized IDE support for writing tests. Standard IDEs are only effective
for writing valid programs and report spurious errors for negative test cases
where errors are expected. Batch test runners such as JUnit also do not have

Chapter 8. Integrated Language Definition Testing 223

the capability to directly direct users to the failing line of code in a test input
in case a test fails.

Testing with homogeneous embeddings Language embedding is a language
composition technique where separate languages are integrated. An exam-
ple is the embedding of a database querying language into a general-purpose
host language. These embeddings can be heterogeneous, where an embedded
language can be developed in a different language than the host language,
or homogeneous, where the host language is used to define the embedded lan-
guage [Hudak, 1998; Tratt, 2008]. Homogeneous embeddings of DSLs are
sometimes also called internal DSLs [Fowler, 2011]. The embedding tech-
nique applied in this chapter is a heterogeneous embedding.

Homogeneously embedded languages must always target the same host
language. This can be a weakness when execution on a different platform is
desired (e.g., JavaScript in the case of mobile development with mobl [He-
mel and Visser, 2011]). It can also be a strength in terms of tool support. As
embedded languages all target the same platform, they can be tested in the
same way. General-purpose testing frameworks can then be applied more ef-
fectively, since they can directly use the embedded language. In MPS [Voelter
and Solomatov, 2010], which primarily targets Java, tests based on JUnit can
be evaluated as they are typed, much like with our testing language. A restric-
tion of the approach used in MPS is that it can only be used test the dynamic
semantics of a language, and only allow for positive test cases. With MPS, a
projectional editor is used that even restricts the tests so they can only follow
the existing syntax of the language, ruling out sketches of new syntax and
test-driven development of new syntactic constructs. Our test specification
language is more flexible, supporting a much wider spectrum of test condi-
tions (Figure 8.5), including negative test cases for syntax or static semantics
and refactoring tests.

Testing with heterogeneous embeddings In previous work, we developed parse-
unit, a grammar testing tool developed as part of the Stratego/XT program
transformation system and tool [Bravenboer et al., 2008]. This tool formed
a precursor to the present work. Parse-unit would embed quoted program
fragments in a test module, much like in the Spoofax testing language, but
only supported syntactic test cases. There was also no IDE support for parse-
unit, and all quoted program fragments were treated as strings rather than
forming a first-class part of the language.

Other testing tools that support embedding have similar limitations as
parse-unit, supporting only syntactic tests, and lacking IDE support. A no-
table example is gUnit [gUnit, 2007], a testing language for ANTLR grammars.
Facilities as those provided by gUnit have been lacking in current language
workbenches and other interactive tools for building and debugging parsers
such as ANTLRWorks [Bovet and Parr, 2008].

Test case generation techniques There is a long history of research on test
case generation techniques for language implementations. An overview is
given in surveys by Boujarwah and Saleh [1997], and Kossatchev and Posyp-

224

kin [2005]. These techniques use grammars to generate test programs. To
control the theoretically infinite set of programs that can be generated using
most grammars, they use annotations in grammars, external control mecha-
nisms, or even imperative generators [Daniel et al., 2007], to constrain this set.
In some cases, sophisticated, hand-tailored program generators are used, such
as Csmith [Yang et al., 2011], a successful, 40,000-line C++ generator program
for randomly generating C programs.

The set of test programs generated with these approaches can be used to
stress-test compiler implementations. For example, they can be used to com-
pare a compiler to its reference implementation, or to check for validity of
generated code for the subset of programs that typecheck. As such, they pro-
vide an excellent complementary approach to our test specifications, possibly
catching corner cases that a language engineer did not think of. However, as
they only test complete compilation chains and rely on a test oracle such as
a reference compiler, they are less effective for testing languages while they
are still under development. In contrast, our approach can be used from the
point of inception of a language and even in the design process. By applying
test-driven development, test specifications can be used to guide the devel-
opment process. Our test specifications also provide a more varied array of
tests by providing an extensive, open-ended set of test condition specification
constructs for observable behavior of language implementations.

Unit tests for domain-specific languages As a side-effect of providing a lan-
guage for testing language implementations, our test specification language
can also be used to test programs written in that language (see Section 8.5.6).
This makes it particularly useful in the domain of testing DSL programs,
where testing tools and frameworks are scarce. Traditionally, language en-
gineers would have to build such tools and frameworks by hand, but recently
Wu et al. [2008] provided a reusable framework for language testing. They
require language engineers to extend their language with scripting constructs
that generate JUnit test cases. The combined scripting and DSL language can
then be used to specify tests. Their framework ensures that the mapping be-
tween the DSL test line numbers and the generated JUnit tests is maintained
for reporting failing tests. They also provide a graphical batch test runner.
While our approach does not provide the same flexibility and requires tests
to be specified with a quotation marks and language and run clauses, it is
interesting to note how our approach relieves language engineers from much
of the heavy lifting required for implementing a DSL testing solution. We
only require language engineers to specify a binding to an execution engine
(Section 8.6.3), and we provide a generic test specification host language that
is combined with the DSL to test.

8.8 C O N C L U D I N G R E M A R K S

In this chapter we proposed an approach to language definition testing by
introducing the notion of a language-parametric testing language. The LPTL
provides a zero-threshold, domain-specific testing infrastructure based on a

Chapter 8. Integrated Language Definition Testing 225

declarative test specification language and extensive tool support for writing
and executing tests. Our implementation in the form of the Spoofax testing
language shows the practical feasibility of the approach.

Tests inspire confidence in language implementations, and can be used to
guide an agile, test-driven language development process. Unfortunately, in
current software language engineering practice, tests are still too often an af-
terthought. Especially DSLs often remain untested, as they are developed
in a short timespan with limited resources. We believe that declarative lan-
guage test suites should become standard components of language defini-
tions, just as BNF-style grammars are. Supported by an LPTL, tests are con-
cise, implementation-independent, and require little to no effort to setup.

Future work In this chapter we emphasized testing of observable behavior of
languages, such as reported errors and name analysis as manifested by refer-
ence resolving in an IDE. Other analyses such as the type and flow analyses of
Chapter 5 are not manifested that way, but it can be useful to write test cases
for them. Right now, these aspects are either indirectly tested, or tested using
the generic “builders” interface for custom transformations. Direct support
for testing such language definition aspects could be a worthwhile addition.
Alternatively, rather than seeking to support all possible compiler and IDE
aspects in a testing language, perhaps a better test abstraction mechanism is
needed to specify multiple tests that interact with a language definition in the
same way. Similarly, an abstraction mechanism for setup blocks could be in-
troduced for improved modularization of test suites, e.g. by allowing of setup
blocks to be put in libraries, to support multiple arguments, and to support
composition.

For the interaction design of the LPTL, our work on interactive disambigua-
tion of Chapter 7 could be applied for handling ambiguities of quoted test
programs. Test understandability can also be improved using further visual
aids, for example to emphasize differences between test inputs and outputs
for refactoring tests.

The declarative basis provided by the LPTL can be used to integrate gen-
erally applicable supportive techniques for testing, such as test case prioritiza-
tion, coverage metrics, coverage visualization, mutation testing, and mutation-
based analyses for untested code. In particular, the integration of such tech-
niques specialized for the domain of parser and compiler testing [Boujarwah
and Saleh, 1997; Kossatchev and Posypkin, 2005; Lämmel, 2001] is an impor-
tant area of future work.

Acknowledgments This research was supported by NWO project 612.063.512,
TFA: Transformations for Abstractions and the NIRICT LaQuSo Build Farm pro-
ject. We would like to thank Martin Bravenboer for his work on the parse-
unit project, which provided a basis for the Spoofax testing language; Danny
Groenewegen for his inspiring tests scripts and test collection for WebDSL;
Zef Hemel for his work on mobl that was used in examples in this chap-
ter; and Maartje de Jonge, Sander Vermolen, and the anonymous referees for
suggestions for this chapter.

226

9
Conclusion

In this dissertation we have studied techniques, methods, and tools for do-
main-specific language engineering. Our goal has been to introduce abstrac-
tions for high-level, declarative language definitions, and to make it possible
to support language engineers in working with those abstractions in an inte-
grated, interactive language engineering environment. To this end we have
studied topics in three main research themes:

• Applying domain-specific languages for declarative specification of lan-
guages and IDEs;

• supporting declarative syntax definition for generating a parser-based,
interactive development environment;

• and providing interactive meta-tooling support, exploring the applica-
tion of modern IDE technology to DSL engineering.

In the remainder of this chapter we give a summary of the key contributions
of this dissertation in relation to these themes, describe how we evaluated our
approach, revisit the research questions of the introductory chapter, and give
recommendations for future work.

9.1 S U M M A RY O F C O N T R I B U T I O N S

Each of the chapters in this thesis lists distinct contributions. We summarize
the core contributions below:

Domain-specific languages for declarative specification of languages and IDEs

• An architecture for black-box extensibility of language definitions
(Chapter 2).

• Techniques for using aspect-oriented programming to facilitate language
portability (Chapter 3).

• Abstractions for the combined specification of languages and IDEs
(Chapter 4).

• A combination of attribute grammars and strategic programming to ab-
stract over typical compiler construction idioms (Chapter 5).

• A language-parametric specification language for testing DSLs (Chap-
ter 8).

227

Declarative syntax definition

• Syntax-level abstractions for editor services implemented using scanner-
less parsing and error recovery (Chapter 4 and 6).

• Syntax error recovery techniques for scannerless, generalized parsers
(Chapter 6).

• Techniques for deriving functionality from declarative syntax, in par-
ticular editor services, recovery rules, and disambiguation suggestions
(Chapters 4, 6, and 7).

Interactive meta-tooling support

• A comprehensive language workbench implementation based on DSLs
for declarative specification of languages and IDEs (Chapter 4).

• An approach for diagnosing ambiguities in concrete object syntax quo-
tations and interactively resolving them (Chapter 7).

• Interactive facilities for testing DSL definitions by embedding language
syntax, semantics, and editor services (Chapter 8).

9.2 E VA L U AT I O N

For the approaches introduced in the core chapters of this dissertation, we
described the rationale, design, implementation, and their applications. In
Chapter 2, we evaluated our approach using the Java language as a realistic
case study, comparing the implementation of well-known language exten-
sions such as including traits, partial classes, and iterator generators against
traditional open compiler approaches. We performed an extensive case study
of porting the Stratego language in Chapter 3 and showed limited runtime
overhead in the implementation. In Chapter 4, we showed how typical lan-
guage and editor services can be implemented through a study of the NWL
language, and described our significant experience with languages and cour-
ses that use Spoofax. We showed the effectiveness of the decorated attribute
grammars paradigm of Chapter 5 with an extensive selection of typical com-
piler construction idioms from the attribute grammar literature, describing
how to implement them based on a library of decorators. We also described a
case study of a grammar analysis and transformation tool that applies these
idioms. In Chapter 6, we performed extensive studies of performance over-
head and recovery quality for different configurations of error recovery tech-
niques. In Chapter 7, we described how to diagnose different classes of am-
biguities, following [Vinju, 2005], and studied quality and performance of
interactive disambiguation for existing meta programs using different object
languages and scenarios. Finally, in Chapter 8 we described how to write
tests for all semantic editor services and other observable behavior of lan-
guage implementations of Chapter 4, applying the approach to mobl [Hemel
and Visser, 2011] and the testing language itself.

228

9.3 R E S E A R C H Q U E S T I O N S R E V I S I T E D

Research Question 1

How can modular language plugin definitions abstract over the implementa-
tion architecture of a particular programming language? Can such plugins use
lower-level features provided by the target platform?

Source-to-source program translators implement programming language ex-
tensions by translating the extended language to to the base language. They
use the base language as a linguistic abstraction over the base language im-
plementation. The base language implementation, in turn, provides an ab-
straction over some target platform, e.g. the Java Virtual Machine. Through
abstraction, a target language may hide parts of the platform, thereby provid-
ing only a limited interface for the implementation of language extensions.

In Chapter 2 we showed how a compiler can be designed based on the
principle of compilation by normalization, compiling a rich base language to a
small core language. In this design, all primitives of the language are exposed
in the core language but also in the rich base language. Consequently, the
language provides a much richer interface for the implementation of language
extensions. Using the Java language as a realistic case study, we showed how
the design can be used for the implementation of a wide variety of language
extensions, including traits, partial classes, and iterator generators.

In related work [Hemel et al., 2009], we described a variation on the com-
pilation by normalization approach, extending the (Java) target with features
such as partial classes and methods with the purpose to provide a better pro-
gramming abstraction for source-to-source translators. Together with compi-
lation by normalization, these techniques provide a rich linguistic program-
ming interface for source-to-source translators that exposes platform primi-
tives together with base language-level abstractions and additional abstrac-
tions to simplify common translation idioms.

Research Question 2

How can DSLs be efficiently ported to another platform, taking into consid-
eration their reliance on platform-specific operations and characteristics? Is it
possible to do so without changing existing DSL programs and libraries written
in the language?

Domain-specific languages provide abstractions for a certain domain of com-
putation and allow developers to focus on the essential complexity of prob-
lems in that domain rather than the accidental complexity of its implemen-
tation. Consequently, they have the potential to abstract over a particular
implementation platform and can potentially support multiple target plat-
forms [Herndon and Berzins, 1988]. Targeting multiple platforms can be re-
alized by creating multiple back ends for the DSL that generate appropriate
code for each platform. In Chapter 3 we showed that aspect weaving can be
used to address portability issues of existing programs and libraries written

Chapter 9. Conclusion 229

in the DSL. In particular, we identified four classes of aspects that address
portability concerns by invasively introducing glue code, code that facilitates
migration, code that facilitates platform integration, and code for optimiza-
tion. We described our experience in applying these techniques to retarget
the Stratego language to Java platform, which formed one of the cornerstones
of the implementation of the Spoofax language workbench.

Research Question 3

How can editor service specifications be integrated into syntactic and semantic
specifications of DSLs, balancing reuse and separation of concerns? How can
language analysis components be structured to expose an interface for use by
semantic editor services?

Modern editor services depend on a combination of syntactic and semantic
properties of languages. In Chapter 4 we studied the dependencies between
language syntax, semantics, and editor services, and introduced abstractions
to declaratively describe editor services in terms of those dependencies.

A key abstraction for both syntactic and semantic editor services is abstrac-
tion over language syntax, requiring separation of concerns between syntax
and editor service specification. We showed how the two can be separately
specified and linked using symbolic integration to reuse the syntax definition,
allowing services such as syntax highlighting and the outline view to be de-
scribed in terms of syntactic categories and constructor names specified in the
syntax definition. The abstraction can be realized by language-independent
techniques for integrating editor services with the parser and error recovery
strategy (Chapter 6).

Semantic editor services can be integrated with the static semantics of a
language by decomposing the name analysis and the type analysis, allowing
them to be reused separately. In essence, this decomposition can be real-
ized by using the name analysis to resolve declarations, rather than directly
resolve types. Based on a separate, reusable name analysis specification, se-
mantic editor services such as reference resolving and content completion can
be specified without having to re-implement the analysis or make invasive
changes to it.

Using origin tracking [van Deursen et al., 1993], language analyses and
transformations can abstract over maintaining position information. in pure
rule-based transformation systems, Chapter 4 described how to implement a
form of origin tracking for strategic term rewriting systems that follows on
our work on source tracing in Chapter 2. While the technique has previously
been applied for relaying errors and debugging transformations, we showed
that it can also be applied for separation of concerns between analyses and
transformations and editor services that heavily depend on accurate position
information to relate semantic information to the editor.

230

Research Question 4

Is it possible to generalize over common attribute grammar abstraction mecha-
nisms? What primitives are needed for this generalization? Given these primi-
tives, is it possible to introduce new abstractions for common analyses of DSLs?

Attribute grammar systems use attribute evaluators to determine an evalu-
ation strategy for attribute equations, i.e. a traversal order over a tree that
calculates the values of attributes. Dynamic attribute evaluators determine
this order dynamically by evaluating attributes as their value is requested,
traversing to adjacent nodes on demand. In Chapter 5 we identified prim-
itives that can express basic traversal operations as those used in dynamic
attribute evaluators, traversing upward to adjacent parent nodes, or downward
to child nodes. By applying strategic programming [Visser et al., 1998; Lämmel
et al., 2003], it is possible to abstract over these traversal primitives and ex-
press more complex traversals such as top-down or innermost traversals. By
providing primitives for strategic tree traversal, programmatic abstractions
can be introduced for common attribute propagation patterns such as those
provided by attribute grammar extensions. In addition to strategic traversal
operators, we provide primitives that reflect over attribute equations in order to
express more sophisticated abstractions.

Together, these primitives are at the heart of decorators, which form ab-
stractions over attribute equations and attribute propagation patterns. We
developed Aster, an attribute grammar system based on decorators, and used
it to implement a library of decorators to express common abstractions such
as copy rules, collection attributes, and circular attribute. In Aster, attributes
and decorators are first-class and can be used to define new attributes and
decorators. By combining layers of decorator abstractions, we showed how
new abstractions can be introduced for name analysis, type analysis, error
messages, and data-flow analysis of DSLs.

Research Question 5

What techniques are needed to efficiently diagnose and recover from syntax er-
rors with scannerless, generalized parsers? Is it possible to support error recov-
ery without breaking the abstraction of pure and declarative syntax definition?

A grammar is a finite set of production rules that describe which strings are
part of a language. For strings that are part of a language, a parser for a gram-
mar can derive a structured representation. Strings that are not are considered
syntactically incorrect.

In Chapter 6 we showed how grammars can be enriched with additional re-
covery production rules to consider syntactically incorrect strings as valid parts
of a language. These recovery rules can take the form of rules that can process
strings of arbitrary characters (water recovery rules) and rules that can parse an
empty string in place of an input symbol at the left-hand side of other produc-
tions (insertion recovery rules). In combination with normal parse production
rules, these recovery rules form a permissive grammar that can derive a struc-
tured representation even for a syntactically incorrect input.

Chapter 9. Conclusion 231

Pure and declarative syntax definitions describe language syntax indepen-
dently from the semantics of a grammar and independent from imperative
actions that determine the correctness or structure of an input string [Kats
et al., 2010]. This makes them amenable for automated analysis and process-
ing. We used the Aster system of Chapter 5 to create a tool to analyze SDF
grammars and to automatically derive permissive grammars, ensuring that lan-
guage engineers do not need to specify recovery strategies by hand.

To parse permissive grammars we used generalized parsing to our ad-
vantage, which can derive both the normal and recovery interpretation for
strings. Using a combination of backtracking and layout-based region selec-
tion we showed that permissive grammars can be efficiently parsed and in
many cases provide good or excellent recovery results following the quality
criteria of Pennello and DeRemer [1978].

Research Question 6

Can ambiguities in concrete syntax quotations be automatically diagnosed in
order to determine the possible syntactic disambiguations? Can an IDE for
meta-programming provide unobtrusive, interactive feedback based on such a
diagnosis?

Generalized parsing makes it possible to embed arbitrary object languages in
a meta language [Visser, 2002]. They gracefully cope with ambiguities by pro-
duce a parse forest with all possible interpretations for an ambiguous input.
This parse forest can be used as the basis for a diagnosis of the ambiguity
and the possible ways that it can be resolved. In Chapter 7 we described an
algorithm that uses a declarative specification of a language composition as a
basis to determine the possible syntactic interpretations and the correspond-
ing explicit quotations that can resolve the ambiguity.

Modern IDEs can provide feedback to meta programmers by parsing meta
programs in the background and marking ambiguities as errors. By providing
quick fix proposals that can be applied at the discretion of the meta program-
mer, they can unobtrusively apply the possible resolutions that address the
ambiguity.

Research Question 7

Is it possible to define a general abstraction for systematic testing of DSL defi-
nitions? How can IDEs facilitate the development of DSL tests?

In Chapter 8 we defined a generic domain-specific meta-language for the spec-
ification of test cases of DSL implementations. Essential elements of such a
language are abstractions to test language syntax (i.e., the parser), static se-
mantics of languages (i.e., the compiler or semantic checker), dynamic seman-
tics of languages (i.e., the chain of compilation and execution or interpreta-
tion), and editor services. Common to all these facilities is the notion of a test
input written in the DSL being tested. To specify such test inputs, we showed
how the concrete syntax of the DSL can be embedded into a test specification
language, forming a language-parametric testing language. By embedding the

232

syntax, semantics, and editor services of the DSL being tested into the testing
language, IDE support can help in writing, maintaining, and understanding
test cases.

9.4 R E C O M M E N D AT I O N S F O R F U T U R E W O R K

This dissertation presented research on techniques, methods, and tool sup-
port for domain-specific language engineering, centered on the Spoofax lan-
guage workbench. The introduction of better abstractions and tools is an
open-ended problem and a topic of ongoing research. In the chapters of this
thesis we raised many issues to be investigated further, including compos-
ability of language plugins, integration of other meta-languages into Spoofax,
and test-driven language development. To conclude we revisit them below.

Composability of language plugins An important area of future work is in
providing further support for first-class modular language plugins. Based on
the modular SDF syntax formalism, SGLR parsing, and modular Stratego and
editor service definitions, it is possible to decompose languages into separate,
reusable components. As an example, WebDSL [Groenewegen et al., 2010]
embeds the HQL language for queries. Still, to fully generalize these results
and to minimize the effort required for creating new compositions, open chal-
lenges exist related to composition of syntax, semantics, and editor services.
By minimizing the effort and risk of composition it can even become possible
to realize user-level composition, where users of a language could just pick
and match the language features they need, and that the environment would
compose them.

For composable syntax, generalized parsers provide a general, language-
independent approach. Generalized parsers support the full class of context-
free grammars, which is closed under composition, unlike subsets of the
context-free grammars such as LL or LR. A limitation of the approach is
that it is not possible to statically guarantee that there are no ambiguities
in the syntax composition. This is particularly apparent when two indepen-
dent language extensions are composed that have the same surface syntax,
e.g. a new * operator that acts as a wildcard and another * operator that
acts as a regular expression–style repetition operator. A composition of these
extensions is inherently ambiguous and cannot be statically avoided. Still, pro-
jectional editors such as MPS [Voelter and Solomatov, 2010] can avoid even
these kinds of ambiguities by requiring users to select the desired extension
from a menu or using keyboard shortcuts, which is subsequently stored in a
structured fashion and not as text. A direction for textual editors may be to
follow the approach of Chapter 7 and provide quick fixes for disambiguation.
For normal (non-meta) programming, this requires a refinement of the algo-
rithm to detect and select disambiguations, and a general representation of
disambiguations, stored either in text or as meta-data.

For composable semantics, modular definition of language extensions pro-
vide a high degree of compositionality that depends on the type of analysis
and transformation performed (global or local). For global transformations,

Chapter 9. Conclusion 233

an ordering of application must be determined, which requires implemen-
tation-level knowledge. There is no obvious solution for this issue, but one
direction may be to further increase the expressiveness of local transforma-
tions, as we have aimed for in Chapter 2 by mixing high-level language code
and low-level core language code.

For composable editor services, challenges to composition relate to those of
syntactic and semantic composition. Composition of semantic editor services
such as view and refactorings is particularly non-trivial, since they depend
on both forms of composition. Refactorings are particularly challenging with
this in mind, since they must guarantee preservation of behavior [Fowler and
Beck, 1999].

Integration of meta-languages In Chapter 4 we showed that the Stratego lan-
guage can be used for concise specifications of analysis, transformations, and
code generation. Still, many other meta-programming languages exist that
each have their own merits and uses. We believe that Spoofax has the potential
to become a common, open platform for hosting multiple meta-programming
languages. Spoofax defines a lightweight, technology-agnostic interface be-
tween editor services and semantic analyses, making it a suitable testbed for
experimentation with other meta-languages.

In Chapter 5 we proposed to pursue full integration of the Aster language
into Spoofax. Aster is currently distributed as part of Spoofax, and can be
used to define analyses for Spoofax language plugins, but additional experi-
ence is needed to identify patterns for specifying editor services and complete
languages with Aster. We would particularly like to explore decorators that
encapsulate logic for typical editor service components, incremental compila-
tion concerns, and related aspects.

Test-driven language development Test-driven and example-based develop-
ment of languages is a very promising approach for systematically construct-
ing new DSLs. In our work on testing we have emphasized testing of ob-
servable behavior of languages, such as reported errors and name analysis as
manifested by reference resolving in an IDE. Other analyses such as the type
and flow analyses of Chapter 5 are not manifested that way, but it can be use-
ful to write test cases for them. There are essentially two possible directions
for future work in that area. The first is to provide further abstractions for
white-box tests, to efficiently test the internals of a language definitions. The
second is to expose these semantic aspects of a language in such a way that
they are amenable to black box tests, by designing fixed interfaces and inves-
tigating idioms to decompose these semantic aspects in a way similar to how
the name analysis is exposed in Chapter 4.

234

Bibliography

Adams, B., De Meuter, W., Tromp, H., and Hassan, A. E. (2009). Can we
refactor conditional compilation into aspects? In Proceedings of the 8th ACM
international conference on Aspect-oriented software development (AOSD 2009),
pages 243–254, New York, NY, USA. ACM. (Cited on page 67.)

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers: Princi-
ples, Techniques, and Tools (2nd Edition). Addison Wesley. (Cited on pages 21,
38, 50, and 122.)

Arnoldus, J., Bijpost, J., and van den Brand, M. (2007). Repleo: a syntax-safe
template engine. In Proceedings of the 6th international conference on Generative
programming and component engineering (GPCE 2007), pages 25–32, New York,
NY, USA. ACM. (Cited on pages 180 and 196.)

Avgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S., Lhoták, J., Lhoták,
O., de Moor, O., Sereni, D., Sittampalam, G., and Tibble, J. (2005). abc: an
extensible AspectJ compiler. In Aspect-oriented software development (AOSD
2005), pages 87–98, New York, NY, USA. ACM. (Cited on page 44.)

Avgustinov, P., Ekman, T., and Tibble, J. (2008). Modularity first: a case for
mixing AOP and attribute grammars. In Proceedings of the 7th international
conference on Aspect-oriented software development (AOSD 2008), pages 25–35,
New York, NY, USA. ACM. (Cited on page 67.)

Baars, A., Swierstra, D., and Löh, A. (2003). UU AG system user man-
ual. Department of Computer Science, Utrecht University, September. (Cited
on page 109.)

Bachrach, J. and Playford, K. (2001). The Java syntactic extender (JSE). In Pro-
ceedings of the 16th ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications (OOPSLA 2001), volume 36 of SIGPLAN
Notices, pages 31–42, New York, NY, USA. ACM. (Cited on page 43.)

Baker, H. G. (1995). CONS should not CONS its arguments, part II: Cheney
on the M.T.A. SIGPLAN Notices, 30(9):17–20. (Cited on page 52.)

Batory, D., Lofaso, B., and Smaragdakis, Y. (1998). JTS: Tools for imple-
menting domain-specific languages. In Proceedings of the Fifth International
Conference on Conference on Software Reuse (ISRE 1998), pages 143 –153. IEEE.
(Cited on pages 180 and 183.)

Beck, K. (2003). Test-driven development: by example. Addison-Wesley Profes-
sional. (Cited on pages 14, 15, 201, 202, and 212.)

Beizer, B. (2002). Software testing techniques. Dreamtech Press. (Cited on
page 202.)

235

Bentley, J. (1986). Programming pearls: little languages. Communications of
the ACM, 29:711–721. (Cited on page 1.)

Bird, R. S. (1984). Using circular programs to eliminate multiple traversals of
data. Acta Informatica, 21(3):239–250. (Cited on page 112.)

Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B., and
Pascual, V. (1989). Centaur: the system. SIGPLAN Notices, 24(2):14–24. (Cited
on pages 6 and 72.)

Boujarwah, A. S. and Saleh, K. (1997). Compiler test case generation meth-
ods: a survey and assessment. Information and Software Technology, 39(9):617–
625. (Cited on pages 15, 202, 224, and 226.)

Bovet, J. and Parr, T. (2008). ANTLRWorks: an ANTLR grammar develop-
ment environment. Software–Practice & Experience, 38:1305–1332. (Cited on
page 224.)

Boyland, J. (1996). Descriptional Composition of Compiler Components. PhD the-
sis, EECS Department, University of California, Berkeley. (Cited on pages 12,
16, 110, 121, 122, 123, and 125.)

Boyland, J. and Graham, S. L. (1994). Composing tree attributions. In Proceed-
ings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 1994), pages 375–388, New York, NY, USA. ACM.
(Cited on page 111.)

Boyland, J. T. (2005). Remote attribute grammars. Journal of the ACM,
52(4):627–687. (Cited on pages 12, 16, 109, 110, and 121.)

Brabrand, C., Möller, A., and Schwartzbach, M. I. (2002). The <bigwig> pro-
ject. ACM Transactions on Internet Technology, 2(2):79–114. (Cited on page 180.)

Bracha, G. (2008). Room 101: Monkey patching. http://gbracha.
blogspot.com/2008/03/monkey-patching.html. (Cited on page 69.)

van den Brand, M., van Deursen, A., Heering, J., de Jong, H., de Jonge, M.,
Kuipers, T., Klint, P., Moonen, L., Olivier, P., Scheerder, J., Vinju, J., Visser, E.,
and Visser, J. (2001). The Asf+Sdf Meta-environment: A component-based
language development environment. In Wilhelm, R., editor, Proceedings of the
10th International Conference on Compiler Construction, volume 2027 of Lecture
Notes in Computer Science, pages 365–370. Springer. (Cited on pages 7, 74,
103, and 175.)

van den Brand, M. G. J., de Jong, H. A., Klint, P., and Olivier, P. A. (2000). Ef-
ficient annotated terms. Software – Practice & Experience, 30(3):259–291. (Cited
on pages 53, 58, 100, 101, 127, 137, and 166.)

van den Brand, M. G. J., Heering, J., Klint, P., and Olivier, P. A. (2002). Com-
piling language definitions: the ASF+SDF compiler. ACM Transactions on
Programming Languages and Systems, 24(4):334–368. (Cited on pages 5, 72, 74,
134, and 180.)

236

http://gbracha.blogspot.com/2008/03/monkey-patching.html
http://gbracha.blogspot.com/2008/03/monkey-patching.html

van den Brand, M. G. J., Scheerder, J., Vinju, J., and Visser, E. (2002). Dis-
ambiguation filters for scannerless generalized LR parsers. In Horspool, N.,
editor, Compiler Construction (CC 2002), volume 2304 of Lecture Notes in Com-
puter Science, pages 143–158, Grenoble, France. Springer-Verlag. (Cited on
pages 33, 42, 135, and 147.)

Bravenboer, M., Dolstra, E., and Visser, E. (2010). Preventing injection attacks
with syntax embeddings. Science of Computer Programming, 75:473–495. (Cited
on pages 20, 135, 136, 164, and 196.)

Bravenboer, M., Kalleberg, K. T., Vermaas, R., and Visser, E. (2008). Strate-
go/XT 0.17. A language and toolset for program transformation. Science of
Computer Programming, 72(1-2):52–70. (Cited on pages 5, 9, 33, 40, 49, 53, 61,
65, 72, 75, 79, 86, 111, 116, 126, 134, 180, 182, 219, and 224.)

Bravenboer, M., Tanter, E., and Visser, E. (2006a). Declarative, formal, and ex-
tensible syntax definition for AspectJ. A case for scannerless generalized-LR
parsing. In Cook, W. R., editor, Proceedings of the 21th ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2006), volume 41 of SIGPLAN Notices, pages 209–228, Portland,
Oregon, USA. ACM. (Cited on pages 135, 138, and 145.)

Bravenboer, M., van Dam, A., Olmos, K., and Visser, E. (2006b). Program
transformation with scoped dynamic rewrite rules. Fundamenta Informaticae,
69(1–2):123–178. (Cited on pages 87, 93, and 103.)

Bravenboer, M., Vermaas, R., Vinju, J., and Visser, E. (2005). Generalized
type-based disambiguation of meta programs with concrete object syntax.
In Glück, R. and Lowry, M., editors, Proceedings of the Fourth International
Conference on Generative Programming and Component Engineering (GPCE 2005),
volume 3676 of Lecture Notes in Computer Science, pages 157–172. Springer
Berlin / Heidelberg. (Cited on pages 180, 183, 185, 193, and 197.)

Bravenboer, M. and Visser, E. (2004). Concrete syntax for objects: domain-
specific language embedding and assimilation without restrictions. In Vlis-
sides, J. M. and Schmidt, D. C., editors, Proceedings of the 19th annual ACM
SIGPLAN conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2004), volume 39 of SIGPLAN Notices, pages 365–383.
ACM. (Cited on pages 9, 10, 30, 31, 32, 75, 107, 132, 135, 138, 180, 183, 185,
186, 197, and 221.)

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., and Grose, T. J. (2004).
Eclipse Modeling Framework. Addison-Wesley. (Cited on page 74.)

Burke, M. G. and Fisher, G. A. (1987). A practical method for LR and LL
syntactic error diagnosis and recovery. ACM Transactions on Programming
Languages and Systems, 9(2):164–197. (Cited on page 174.)

Chamberlin, D. D. and Boyce, R. F. (1974). SEQUEL: A structured english
query language. In Proceedings of the 1974 ACM SIGFIDET (now SIGMOD)

Bibliography 237

workshop on data description, access and control (SIGFIDET 1974), pages 249–
264, New York, NY, USA. ACM. (Cited on page 1.)

Charles, P. (1991). A practical method for constructing efficient LALR(k) parsers
with automatic error recovery. PhD thesis, New York University. (Cited on
pages 153 and 174.)

Charles, P., Fuhrer, R. M., Sutton, Jr., S. M., Duesterwald, E., and Vinju, J.
(2009). Accelerating the creation of customized, language-specific IDEs in
Eclipse. In Proceedings of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications (OOPSLA 2009), volume 44

of SIGPLAN Notices, pages 191–206. ACM. (Cited on pages 6, 72, 95, 98,
and 220.)

Charles, P., Fuhrer, R. M., and Sutton, Jr., S. M. (2007). IMP: a meta-tooling
platform for creating language-specific IDEs in Eclipse. In Proceedings of the
twenty-second IEEE/ACM international conference on Automated software engi-
neering (ASE 2007), pages 485–488. ACM. (Cited on pages 6, 72, 98, and 174.)

Clifton, C., Leavens, G. T., Chambers, C., and Millstein, T. (2000). Multi-
Java: modular open classes and symmetric multiple dispatch for Java. In
Proceedings of the 15th ACM SIGPLAN conference on Object-oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 2000), pages 130–145,
New York, NY, USA. ACM. (Cited on page 24.)

Clifton, C., Millstein, T., Leavens, G. T., and Chambers, C. (2006). Multi-
Java: Design rationale, compiler implementation, and applications. ACM
Transactions on Programming Languages and Systems, 28(3):517–575. (Cited on
pages 24 and 69.)

Cook, S., Jones, G., Kent, S., and Wills, A. C. (2007). Domain-Specific Develop-
ment with Visual Studio DSL Tools. Addison Wesley. (Cited on page 73.)

Cordy, J. R., Halpern-Hamu, C. D., and Promislow, E. (1991). TXL: a rapid
prototyping system for programming language dialects. Computer Languages,
16:97–107. (Cited on pages 5, 72, 105, and 180.)

Danaher, J. S., Angelina Lee, I. T., and Leiserson, C. E. (2006). Programming
with exceptions in JCilk. Science of Computer Programming, 63(2):147–171.
(Cited on page 45.)

Daniel, B., Dig, D., Garcia, K., and Marinov, D. (2007). Automated testing
of refactoring engines. In Crnkovic, I. and Bertolino, A., editors, Proceedings
of the 6th joint meeting of the European Software Engineering Conference and the
Int. Symposium on Foundations of Software Engineering (ESEC/FSE 2007), pages
185–194. ACM. (Cited on page 225.)

de Jonge, M., Nilsson-Nyman, E., Kats, L. C. L., and Visser, E. (2009). Natu-
ral and flexible error recovery for generated parsers. In van den Brand, M.,

238

Gasevic, D., and Gray, J., editors, Proceedings of the Second International Con-
ference on Software Language Engineering (SLE 2009), volume 5969 of Lecture
Notes in Computer Science, pages 204–223. Springer. (Cited on pages 17, 133,
154, and 169.)

Degano, P. and Priami, C. (1995). Comparison of syntactic error handling
in LR parsers. Software – Practice & Experience, 25(6):657–679. (Cited on
pages 132, 145, 147, 149, 173, and 221.)

Detlefs, D. and Agesen, O. (1999). Inlining of virtual methods. In Guerraoui,
R., editor, Proceedings of the European Conference on Object-Oriented Program-
ming (ECOOP 2009), volume 1628 of Lecture Notes in Computer Science, pages
258–278. Springer. (Cited on page 66.)

van Deursen, A. and Klint, P. (1998). Little languages: little maintenance?
Journal of Software Maintenance, 10(2):75–92. (Cited on page 1.)

van Deursen, A., Klint, P., and Tip, F. (1993). Origin tracking. Journal of
Symbolic Computation, 15(5/6):523–545. (Cited on pages 43, 75, 90, 100, 104,
and 230.)

van Deursen, A., Klint, P., and Visser, J. (2000). Domain-specific languages:
an annotated bibliography. SIGPLAN Notices, 35(6):26–36. (Cited on pages 1

and 71.)

van Deursen, A. and Kuipers, T. (1999). Building documentation generators.
In IEEE International Conference on Software Maintenance (ICSM 1999), page 40.
IEEE. (Cited on pages 136, 153, and 176.)

van Dijk, M. H. H. and Koorn, J. W. C. (1990). GSE, a generic syntax-directed
editor. Technical Report CS-R9045, Centrum voor Wiskunde en Informatica
(CWI). (Cited on page 7.)

DLTK (2007). Dynamic language toolkit (DLTK). http://www.eclipse.
org/dltk/. (Cited on pages 6, 72, and 98.)

Dov, A. B. (2008). infomancers-collections. http://code.google.com/p/
infomancers-collections/. (Cited on page 28.)

Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., and Black, A. P. (2006).
Traits: A mechanism for fine-grained reuse. ACM Transactions on Program-
ming Languages and Systems, 28(2):331–388. (Cited on pages 21, 25, and 133.)

Earley, J. (1970). An efficient context-free parsing algorithm. Communications
of the ACM, 13(2):94–102. (Cited on page 5.)

Efftinge, S. et al. (2008). openArchitectureWare User Guide. Version 4.3.
Available from http://www.eclipse.org/gmt/oaw/doc/4.3/html/
contents/. (Cited on pages 104 and 196.)

Bibliography 239

http://www.eclipse.org/dltk/
http://www.eclipse.org/dltk/
http://code.google.com/p/infomancers-collections/
http://code.google.com/p/infomancers-collections/
http://www.eclipse.org/gmt/oaw/doc/4.3/html/contents/
http://www.eclipse.org/gmt/oaw/doc/4.3/html/contents/

Efftinge, S. and Voelter, M. (2006). oAW xText: a framework for textual DSLs.
In Workshop on Modeling Symposium at Eclipse Summit. (Cited on pages 7, 74,
103, 104, and 204.)

Ekman, T. and Hedin, G. (2004). Rewritable reference attributed grammars.
In Proceedings of the 18th European Conference on Object-Oriented Programming
(ECOOP 2004), volume 3086 of Lecture Notes in Computer Science, pages 144–
169. Springer. (Cited on page 129.)

Ekman, T. and Hedin, G. (2007). The JastAdd extensible Java compiler. In
Gabriel, R. P., Bacon, D. F., Lopes, C. V., and Jr., G. L. S., editors, Proceed-
ings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 2007), pages 1–18. ACM.
(Cited on pages 20 and 43.)

Erdweg, S., Kats, L. C. L., Rendel, T., Kästner, C., Ostermann, K., and Visser,
E. (2011a). Growing a language environment with editor libraries. In Denney,
E. and Schultz, U. P., editors, Proceedings of the 7th International Conference on
Generative Programming and Component Engineering (GPCE 2011). ACM. (Cited
on pages 16, 101, and 107.)

Erdweg, S., Rendel, T., Kästner, C., and Ostermann, K. (2011b). SugarJ:
Library-based syntactic language extensibility. In Fisher, K. S., editor, Pro-
ceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA 2011), SIGPLAN
Notices, Portland, Oregon, USA. ACM. (Cited on pages 16, 101, and 107.)

Farnum, C. (1992). Pattern-based tree attribution. In Proceedings of the Sympo-
sium on Principles of Programming Languages (POPL’92), pages 211–222. (Cited
on page 111.)

Ford, B. (2002). Packrat parsing: simple, powerful, lazy, linear time. Func-
tional pearl. In Proceedings of the seventh ACM SIGPLAN international con-
ference on Functional programming (ICFP 2002), pages 36–47, New York, NY,
USA. ACM. (Cited on pages 135 and 175.)

Fowler, M. (2005a). Language workbenches: The killer-app for do-
main specific languages? http://martinfowler.com/articles/
languageWorkbench.html. (Cited on pages 7, 72, 73, 80, 160, 204,
and 212.)

Fowler, M. (2005b). PostIntelliJ. http://martinfowler.com/bliki/
PostIntelliJ.html. (Cited on page 71.)

Fowler, M. (2009). A pedagogical framework for domain-specific languages.
IEEE Software, 26:13–14. (Cited on page 72.)

Fowler, M. (2011). Domain-Specific Languages. Addison Wesley. (Cited on
pages 3, 7, 72, and 224.)

240

http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/bliki/PostIntelliJ.html
http://martinfowler.com/bliki/PostIntelliJ.html

Fowler, M. and Beck, K. (1999). Refactoring: improving the design of existing
code. Addison-Wesley Professional. (Cited on pages 217 and 234.)

Frens, J. D. and Meneely, A. (2006). Fifteen compilers in fifteen days. In
Baldwin, D., Tymann, P. T., Haller, S. M., and Russell, I., editors, Proceedigns
of the 39th Technical Symposium on Computer Science Education (SIGCSE 2006),
pages 92–96. ACM. (Cited on page 223.)

Gamma, E. and Beck, K. (1998). Test infected: Programmers love writing
tests. Java Report, 3(7):37–50. (Cited on pages 203, 208, and 211.)

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design patterns: el-
ements of reusable object-oriented software. Addison-Wesley Professional. (Cited
on page 128.)

Goldschmidt, T., Becker, S., and Uhl, A. (2008). Classification of concrete tex-
tual syntax mapping approaches. In Proceedings of the 4th European conference
on Model Driven Architecture: Foundations and Applications (ECMDA-FA 2008),
pages 169–184, Berlin, Heidelberg. Springer-Verlag. (Cited on page 103.)

Gómez, R., Augusto, J. C., and Galton, A. (2001). Testing an event specifi-
cation language. In Proceedings of the 13th International Conference on Software
Engineering and Knowledge Engineering (SEKE’01), pages 341–345. (Cited on
pages 202 and 223.)

Goodenough, J. B. (1980). The Ada compiler validation capability. In Pro-
ceedings of the ACM-SIGPLAN symposium on Ada programming language, pages
1–8. ACM. (Cited on pages 202 and 223.)

Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005). The Java Language Speci-
fication. Prentice Hall PTR, Boston, Mass., third edition. (Cited on pages 33

and 36.)

Groenewegen, D. and Visser, E. (2011). Integration of data validation and
user interface concerns in a DSL for web applications. Software and Systems
Modeling, pages 1–18. (Cited on page 16.)

Groenewegen, D. M., Hemel, Z., and Visser, E. (2010). Separation of concerns
and linguistic integration in WebDSL. IEEE Software, 27(5):31–37. (Cited on
pages 60, 66, 82, 87, 102, 107, 182, 194, and 233.)

Groenewegen, D. M. and Visser, E. (2008). Declarative access control for
WebDSL: Combining language integration and separation of concerns. In
Schwabe, D., Curbera, F., and Dantzig, P., editors, Proceedings of the Eighth
International Conference on Web Engineering (ICWE 2008), pages 175–188. IEEE.
(Cited on page 16.)

Grune, D. and Jacobs, C. J. H. (2008). Parsing techniques: a practical guide.
Springer-Verlag New York Inc. (Cited on page 5.)

Bibliography 241

gUnit (2007). gUnit - grammar unit testing. http://www.antlr.org/
wiki/display/ANTLR3/gUnit+-+Grammar+Unit+Testing. (Cited on
page 224.)

Hamill, P. (2004). Unit Test Frameworks, chapter. Chapter 3: The xUnit Family of
Unit Test Frameworks. O’Reilly. (Cited on pages 15, 202, 207, and 223.)

Hardwick, J. C. and Sipelstein, J. (1996). Java as an intermediate language.
Technical Report CMU-CS-96-161, School of Computer Science, Carnegie
Mellon University. (Cited on page 44.)

Hedin, G. (2000). Reference attributed grammars. Informatica (Slovenia),
24(3):301–317. (Cited on pages 110, 119, 120, and 129.)

Hedin, G. and Magnusson, E. (2003). JastAdd – an aspect-oriented compiler
construction system. Science of Computer Programming, 47(1):37–58. (Cited on
pages 5, 72, 105, 113, 127, and 128.)

Heering, J., Hendriks, P. R. H., Klint, P., and Rekers, J. (1989). The syntax
definition formalism SDF – reference manual. SIGPLAN Notices, 24(11):43–
75. (Cited on pages 5, 9, 75, 78, 82, 133, 135, and 219.)

Heering, J. and Klint, P. (2000). Semantics of programming languages: A
tool-oriented approach. SIGPLAN Notices, 35(3):39–48. (Cited on page 72.)

Heidenreich, F., Johannes, J., Karol, S., Seifert, M., and Wende, C. (2009a).
Derivation and refinement of textual syntax for models. In Paige, R. F., Hart-
man, A., and Rensink, A., editors, Proceedings of Model Driven Architecture -
Foundations and Applications, 5th European Conference (ECMDA-FA 2009), vol-
ume 5562 of Lecture Notes in Computer Science, pages 114–129. Springer. (Cited
on pages 7, 74, 103, and 104.)

Heidenreich, F., Johannes, J., Seifert, M., Wende, C., and Marcel, B. (2009b).
Generating safe template languages. In Proceedings of the eighth international
conference on Generative programming and component engineering (GPCE 2009),
pages 99–108, New York, NY, USA. ACM. (Cited on page 196.)

Hemel, Z., Groenewegen, D. M., Kats, L. C. L., and Visser, E. (2011). Static
consistency checking of web applications with WebDSL. Journal of Symbolic
Computation, 46(2):150–182. (Cited on pages 4, 16, and 102.)

Hemel, Z., Kats, L. C. L., Groenewegen, D. M., and Visser, E. (2009). Code
generation by model transformation. A case study in transformation modu-
larity. Software and Systems Modeling, 9(3):375–402. (Cited on pages 16, 96,
102, and 229.)

Hemel, Z., Kats, L. C. L., and Visser, E. (2008). Code generation by model
transformation. A case study in transformation modularity. In Gray, J.,
Pierantonio, A., and Vallecillo, A., editors, Theory and Practice of Model Trans-
formations. First International Conference on Model Transformation (ICMT 2008),

242

http://www.antlr.org/wiki/display/ANTLR3/gUnit+-+Grammar+Unit+Testing
http://www.antlr.org/wiki/display/ANTLR3/gUnit+-+Grammar+Unit+Testing

volume 5063 of Lecture Notes in Computer Science, pages 183–198, Heidelberg.
Springer. (Cited on page 16.)

Hemel, Z. and Visser, E. (2009). PIL: A platform independent language for
retargetable DSLs. In van den Brand, M. and Gray, J., editors, Proceedings of
the Second International Conference on Software Language Engineering (SLE 2009),
volume 5969 of Lecture Notes in Computer Science, pages 224–243. Springer.
(Cited on pages 66, 68, and 101.)

Hemel, Z. and Visser, E. (2011). Declaratively programming the mobile web
with mobl. In Fisher, K. S., editor, Proceedings of the 26th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA 2011), SIGPLAN Notices, Portland, Oregon, USA. ACM.
(Cited on pages 101, 106, 206, 213, 224, and 228.)

Herndon, Jr., R. M. and Berzins, V. A. (1988). The realizable benefits of a
language prototyping language. IEEE Transactions on Software Engineering,
14:803–809. (Cited on page 229.)

Hirzel, M. and Grimm, R. (2007). Jeannie: granting Java Native Interface
developers their wishes. In Proceedings of the 22nd annual ACM SIGPLAN
conference on Object-oriented programming systems and applications (OOPSLA
2007), volume 42 of SIGPLAN Notices, pages 19–38, New York, NY, USA.
ACM. (Cited on page 44.)

Huang, S. S., Zook, D., and Smaragdakis, Y. (2008). Domain-specific lan-
guages and program generation with Meta-AspectJ. ACM Transactions on
Software Engineering and Methodology, 18:6:1–6:32. (Cited on pages 180, 183,
193, and 197.)

Hudak, P. (1998). Modular domain specific languages and tools. In Proceed-
ings of the 5th International Conference on Software Reuse (ICSR 1998), pages
134–142, Washington, DC, USA. IEEE. (Cited on pages 3, 106, 129, and 224.)

Hugunin, J. (2006). Dynamic languages on .NET - IronPython and beyond:
IronPython 1.0 released today! http://blogs.msdn.com/hugunin/
archive/2006/09/05/741605.aspx. (Cited on page 48.)

Jalili, F. (1983). A general linear time evaluator for attribute grammars. SIG-
PLAN Notices, 18(9):35–44. (Cited on page 127.)

Johnson, S. C. (1975). YACC—yet another compiler-compiler. Technical Re-
port CS-32, AT & T Bell Laboratories. (Cited on page 5.)

Johnstone, A., Scott, E., and Economopoulos, G. (2004). Generalised pars-
ing: Some costs. In Duesterwald, E., editor, Proceedings of the 13th Interna-
tional Conference on Compiler Construction (CC 2004), pages 89–103. (Cited on
pages 149 and 195.)

Bibliography 243

http://blogs.msdn.com/hugunin/archive/2006/09/05/741605.aspx
http://blogs.msdn.com/hugunin/archive/2006/09/05/741605.aspx

Jones, S. P., Ramsey, N., and Reig, F. (1999). C--: A portable assembly
language that supports garbage collection. In Proceedings of the International
Conference on Principles and Practice of Declarative Programming (PPDP 1999),
volume 1702 of Lecture Notes in Computer Science, pages 1–28. Springer. (Cited
on page 68.)

Jouault, F., Bézivin, J., and Kurtev, I. (2006). TCS: a DSL for the specification
of textual concrete syntaxes in model engineering. In Proceedings of the 5th
international conference on Generative and Component Engineering (GPCE 2006),
pages 249–254. ACM. (Cited on pages 103 and 104.)

Kalleberg, K. T. and Visser, E. (2006). Combining aspect-oriented and strate-
gic programming. In Cirstea, H. and Marti-Oliet, N., editors, Proceedings of
the 6th International Workshop on Rule-Based Programming (RULE 2005), volume
147 of Electronic Notes in Theoretical Computer Science, pages 5–30. Elsevier Sci-
ence Publishers. (Cited on pages 55 and 68.)

Kalleberg, K. T. and Visser, E. (2007a). Fusing a transformation language
with an open compiler. In Sloane, A. and Johnstone, A., editors, Proceedings
of the Seventh Workshop on Language Descriptions, Tools, and Applications (LDTA
2007), volume 203 of Electronic Notes in Theoretical Computer Science, pages
21–36. Elsevier. (Cited on pages 49, 59, 67, and 100.)

Kalleberg, K. T. and Visser, E. (2007b). Spoofax: An interactive development
environment for program transformation with Stratego/XT. In Sloane, A.
and Johnstone, A., editors, Proceedings of the Seventh Workshop on Language De-
scriptions, Tools, and Applications (LDTA 2007), volume 203 of Electronic Notes
in Theoretical Computer Science, pages 47–50. Elsevier. (Cited on pages 75

and 105.)

Kam, J. B. and Ullman, J. D. (1977). Monotone data flow analysis frameworks.
Acta Inf., 7:305–317. (Cited on page 38.)

Kastens, U. and Waite, W. M. (1994). Modularity and reusability in attribute
grammars. Acta Informatica, 31(7):601–627. (Cited on pages 5, 109, and 113.)

Kats, L. C. L., Bravenboer, M., and Visser, E. (2008a). Mixing source and byte-
code. A case for compilation by normalization. In Kiczales, G., editor, Pro-
ceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2008), volume 43 of SIGPLAN
Notices, pages 91–108, New York, NY, USA. ACM. (Cited on page 17.)

Kats, L. C. L., de Jonge, M., Nilsson-Nyman, E., and Visser, E. (2009a).
Providing rapid feedback in generated modular language environments.
Adding error recovery to scannerless generalized-LR parsing. In Leavens,
G. T., editor, Proceedings of the 24th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA 2009),
volume 44 of SIGPLAN Notices, pages 445–464, New York, NY, USA. ACM.
(Cited on pages 17 and 133.)

244

Kats, L. C. L., Kalleberg, K. T., and Visser, E. (2009b). Domain-specific lan-
guages for composable editor plugins. In Proceedings of the Ninth Interna-
tional Workshop on Language Descriptions, Tools, and Applications (LDTA 2009),
volume 253 of Electronic Notes in Theoretical Computer Science, pages 149–163.
Elsevier. (Cited on page 75.)

Kats, L. C. L., Kalleberg, K. T., and Visser, E. (2011a). Interactive disambigua-
tion of meta programs with concrete object syntax. In van den Brand, M.,
Malloy, B., and Staab, S., editors, Proceedings of the Third International Con-
ference on Software Language Engineering (SLE 2010), volume 6563 of Lecture
Notes in Computer Science, pages 327–336. Springer. (Cited on page 17.)

Kats, L. C. L., Sloane, A. M., and Visser, E. (2008b). Decorated attribute
grammars: Attribute evaluation meets strategic programming. Technical
Report TUD-SERG-2008-038a (extended version), Software Engineering Re-
search Group, Delft University of Technology. (Cited on page 127.)

Kats, L. C. L., Sloane, A. M., and Visser, E. (2009c). Decorated attribute gram-
mars: Attribute evaluation meets strategic programming. In de Moor, O. and
Schwartzbach, M. I., editors, Proceedings of the 18th International Conference on
Compiler Construction (CC 2009), volume 5501 of Lecture Notes in Computer
Science, pages 142–157. Springer. (Cited on pages 17 and 111.)

Kats, L. C. L., Vermaas, R., and Visser, E. (2011b). Integrated language def-
inition testing: Enabling test-driven language development. In Fisher, K. S.,
editor, Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA 2011),
SIGPLAN Notices. ACM. (Cited on page 17.)

Kats, L. C. L. and Visser, E. (2010a). Encapsulating software platform logic
by aspect-oriented programming: A case study in using aspects for lan-
guage portability. In Marinescu, C. and Vinju, J., editors, Proceedings of the
Tenth International Working Conference on Source Code Analysis and Manipulation
(SCAM 2010), pages 147–156. IEEE. (Cited on page 17.)

Kats, L. C. L. and Visser, E. (2010b). The Spoofax language workbench: rules
for declarative specification of languages and IDEs. In Cook, W. R., Clarke,
S., and Rinard, M. C., editors, Proceedings of the 25th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA 2010), pages 444–463. ACM. (Cited on pages 16 and 17.)

Kats, L. C. L., Visser, E., and Wachsmuth, G. (2010). Pure and declarative
syntax definition: paradise lost and regained. In Proceedings of the ACM
international conference on Object oriented programming systems languages and
applications (OOPSLA 2010), volume 45 of SIGPLAN Notices, pages 918–932,
New York, NY, USA. ACM. (Cited on pages 105, 215, and 232.)

Khwaja, A. A. and Urban, J. E. (1993). Syntax-directed editing environments:
issues and features. In Proceedings of the 1993 ACM/SIGAPP symposium on

Bibliography 245

Applied computing: states of the art and practice (SAC 1993), pages 230–237,
New York, NY, USA. ACM. (Cited on page 7.)

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold,
W. G. (2001). An overview of AspectJ. In Knudsen, J. L., editor, Proceed-
ings of the European Conference on Object-Oriented Programming (ECOOP 2001),
volume 2072 of Lecture Notes in Computer Science, pages 327–355. (Cited on
pages 55, 56, 69, and 133.)

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier,
J.-M., and Irwin, J. (1997). Aspect-oriented programming. In Akşit, M. and
Matsuoka, S., editors, Proceedings of the European Conference on Object-Oriented
Programming (ECOOP 1997), volume 1241 of Lecture Notes in Computer Science,
pages 220–242. Springer. (Cited on pages 11, 21, 44, 49, 128, and 133.)

Klint, P. (1993). A meta-environment for generating programming environ-
ments. ACM Transactions on Software Engineering and Methodology, 2(2):176–
201. (Cited on pages 7, 14, 74, 103, 105, and 175.)

Klint, P., van der Storm, T., and Vinju, J. (2009). Rascal: a domain specific
language for source code analysis and manipulation. In Proceedings of the
Ninth International Working Conference on Source Code Analysis and Manipula-
tion (SCAM 2009), pages 168–177. (Cited on pages 5, 72, 105, and 180.)

Klusener, S. and Lämmel, R. (2003). Deriving tolerant grammars from a
base-line grammar. In International Conference on Software Maintenance (ICSM
2003), pages 179–189. IEEE. (Cited on page 176.)

Knuth, D. E. (1968). Semantics of context-free languages. Theory of Computing
Systems, 2:127–145. 10.1007/BF01692511. (Cited on pages 109 and 111.)

Koorn, J. W. C. (1993). Connecting semantic tools to a syntax-directed user-
interface. Proceedings of the Conference on Computing Science in the Netherlands
(CSN 1993), pages 217–228. (Cited on pages 74 and 103.)

Kossatchev, A. and Posypkin, M. (2005). Survey of compiler testing methods.
Programming and Computer Software, 31(1):10–19. (Cited on pages 15, 202, 224,
and 226.)

Krahn, H., Rumpe, B., and Völkel, S. (2007). Efficient editor generation for
compositional DSLs in Eclipse. In Proceedings of the 7th OOPSLA Workshop on
Domain-Specific Modeling, technical report TR-38, pages 218–228. University
of Jyväskylä. (Cited on page 175.)

Krahn, H., Rumpe, B., and Völkel, S. (2008). Monticore: Modular devel-
opment of textual domain specific languages. In Paige, R. F. and Meyer,
B., editors, Objects, Components, Models and Patterns, TOOLS EUROPE 2008,
volume 11 of Lecture Notes in Business Information Processing, pages 297–315.
Springer. (Cited on pages 7, 74, 103, 104, 135, 175, 204, and 220.)

246

Kuhn, T. and Thomann, O. (2006). Eclipse corner: Abstract syntax tree.
http://eclipse.org/articles/article.php?file=Article-
JavaCodeManipulation_AST/index.html. (Cited on page 169.)

Kuiper, M. F. and Saraiva, J. (1998). Lrc - a generator for incremental
language-oriented tools. In Proceedings of the 7th International Conference
on Compiler Construction (CC 1998), pages 298–301, London, UK. Springer-
Verlag. (Cited on pages 6 and 72.)

Lämmel, R. (2001). Grammar testing. In Hußmann, H., editor, Proceedings of
the Fourth International Conference on Fundamental Approaches to Software Engi-
neering (FASE 2001), volume 2029 of Lecture Notes in Computer Science, pages
201–216. Springer. (Cited on page 226.)

Lämmel, R. (2003). Typed generic traversal with term rewriting strategies.
Journal of Logic and Algebraic Programming, 54(1):1–64. (Cited on pages 128

and 198.)

Lämmel, R., Visser, E., and Visser, J. (2003). Strategic programming meets
adaptive programming. In Proceedings of Aspect-Oriented Software Development
(AOSD 2003), pages 168–177, Boston, USA. ACM. (Cited on pages 110, 114,
115, and 231.)

Lavie, A. and Tomita, M. (1993). GLR* – an efficient noise skipping parsing
algorithm for context free grammars. In Proceedings of the Third International
Workshop on Parsing Technologies, pages 123–134. (Cited on page 174.)

Lee, P. (1989). Realistic compiler generation. MIT Press, Cambridge, MA, USA.
(Cited on page 72.)

Lévy, J.-P. (1971). Automatic Correction of Syntax Errors in Programming Lan-
guages. PhD thesis, Cornell University, Ithaca, NY, USA. (Cited on page 174.)

Liang, S. (1999). Java Native Interface: Programmer’s Guide and Reference.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. (Cited
on page 44.)

Lindholm, T. and Yellin, F. (1999). The Java Virtual Machine Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, second
edition. (Cited on pages 37 and 45.)

Logozzo, F. and Fähndrich, M. (2008). On the relative completeness of byte-
code analysis versus source code analysis. In Hendren, L., editor, Proceedings
of the 17th International Conference on Compiler Construction (CC 2008), volume
4959 of Lecture Notes in Computer Science, pages 192–212. Springer. (Cited on
page 42.)

Lohmann, D., Scheler, F., Tartler, R., Spinczyk, O., and Schröder-Preikschat,
W. (2006). A quantitative analysis of aspects in the eCos kernel. In Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems 2006

Bibliography 247

http://eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
http://eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html

(EuroSys 2006), volume 40 of ACM SIGOPS Operating Systems Review, pages
191–204, New York, NY, USA. ACM. (Cited on page 67.)

Magnusson, E., Ekman, T., and Hedin, G. (2007). Extending attribute gram-
mars with collection attributes – evaluation and applications. Proceedings of
the Int. Working Conference on Source Code Analysis and Manipulation, pages
69–80. (Cited on pages 110, 121, and 129.)

Magnusson, E. and Hedin, G. (2007). Circular reference attributed gram-
mars - their evaluation and applications. Science of Computer Programming,
68(1):21–37. (Cited on pages 12, 16, 110, 122, 123, 125, and 129.)

Malloy, B. A., Power, J. F., and Waldron, J. T. (2002). Applying software en-
gineering techniques to parser design: the development of a C# parser. In
Proceedings on the research conference of the South African institute of computer
scientists and information technologists on Enablement through technology (SAIC-
SIT 2002). South African Institute for Computer Scientists and Information
Technologists. (Cited on page 223.)

Mauney, J. and Fischer, C. N. (1988). Determining the extent of lookahead
in syntactic error repair. ACM Transactions on Programming Languages and
Systems, 10(3):456–469. (Cited on page 174.)

Melton, J. and Eisenberg, A. (2000). Understanding SQL and Java Together: A
Guide to SQLJ, JDBC, and Related Technologies. Morgan Kaufmann. (Cited on
pages 20 and 44.)

Mernik, M., Heering, J., and Sloane, A. M. (2005). When and how to develop
domain-specific languages. ACM Computing Surveys, 37(4):344. (Cited on
pages 1, 3, 48, and 71.)

Meyer, J. and Downing, T. (1997). Java Virtual Machine. O’Reilly & Associates,
Inc., Sebastopol, CA, USA. (Cited on page 33.)

Miecznikowski, J. and Hendren, L. (2001). Decompiling Java using staged en-
capsulation. Proceedings of the Workshop on Decompilation Techniques, appeared
in Proceedings of the Working Conference on Reverse Engineering (WCRE 2001),
pages 368–374. (Cited on page 28.)

Moonen, L. (2001). Generating robust parsers using island grammars. In Pro-
ceedings of the Working Conference on Reverse Engineering (WCRE 2001), pages
13–22. IEEE. (Cited on pages 136, 137, 153, and 176.)

Moonen, L. (2002). Lightweight impact analysis using island grammars. In
Proceedings of the 10th IEEE International Workshop of Program Comprehension,
pages 219–228. IEEE. (Cited on pages 136 and 153.)

de Moor, O., Backhouse, K., and Swierstra, S. D. (2000). First-class attribute
grammars. Informatica, 24(3):329–341. (Cited on page 128.)

248

de Moor, O., Peyton Jones, S. L., and Van Wyk, E. (1999). Aspect-oriented
compilers. In Czarnecki, K. and Eisenecker, U. W., editors, Proceedings of
the International Conference on Generative and Component-Based Software Engi-
neering (GPCE 1999), volume 1799 of Lecture Notes in Computer Science, pages
121–133. Springer. (Cited on page 67.)

Murer, S., Omohundro, S., Stoutamire, D., and Szyperski, C. (1996). Itera-
tion abstraction in Sather. ACM Transactions on Programming Languages and
Systems, 18(1):1–15. (Cited on page 27.)

Myers, G. J. (2008). The art of software testing, 2nd edition. Wiley-India. (Cited
on pages 202, 204, 205, and 206.)

Nilsson-Nyman, E., Ekman, T., and Hedin, G. (2009). Practical scope recov-
ery using bridge parsing. In Gasevic, D., Lämmel, R., and Wyk, E. V., editors,
Proceedings of the First International Conference on Software Language Engineering
(SLE 2008), volume 5452 of Lecture Notes in Computer Science, pages 95–113.
(Cited on pages 133, 153, and 154.)

Nilsson-Nyman, E., Ekman, T., Hedin, G., and Magnusson, E. (2008). Declar-
ative intraprocedural flow analysis of Java source code. In Johnstone, A. and
Vinju, J., editors, Proceedings of the 8th International Workshop on Language De-
scriptions, Tools and Applications (LDTA 2008), volume 238 of Electronic Notes
in Theoretical Computer Science, pages 155–171. Springer. (Cited on pages 12,
16, 120, 122, and 123.)

Nutter, C. (2008). Promise and peril for alternative Ruby im-
pls. http://blog.headius.com/2008/04/promise-and-peril-
for-alternative-ruby.html. (Cited on page 48.)

Nystrom, N., Clarkson, M. R., and Myers, A. C. (2003). Polyglot: An extensi-
ble compiler framework for Java. Proceedings of the 12th International Confer-
ence on Compiler Construction (CC 2003), 2622:138–152. (Cited on pages 5, 20,
43, and 72.)

Odersky, M., Spoon, L., and Venners, B. (2008). Programming in Scala. Artima
Press. (Cited on pages 26, 51, and 65.)

OSGi (2009). OSGi Service Platform, Core Specification, Release 4, Version 4.2.
OSGi Alliance. (Cited on pages 6 and 79.)

Paakki, J. (1995). Attribute grammar paradigms - a high-level methodology
in language implementation. ACM Computing Surveys, 27(2):196–255. (Cited
on pages 12 and 109.)

Pai, A. B. and Kieburtz, R. B. (1980). Global context recovery: A new strat-
egy for syntactic error recovery by table-drive parsers. ACM Transactions on
Programming Languages and Systems, 2(1):18–41. (Cited on pages 155 and 174.)

Bibliography 249

http://blog.headius.com/2008/04/promise-and-peril-for-alternative-ruby.html
http://blog.headius.com/2008/04/promise-and-peril-for-alternative-ruby.html

Parr, T. and Fisher, K. (2011). LL(*): the foundation of the ANTLR parser
generator. In Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’11, pages 425–436, New York, NY,
USA. ACM. (Cited on pages 5 and 135.)

Parr, T. J. (2004). Enforcing strict model-view separation in template engines.
In Proceedings of the 13th international conference on World Wide Web (WWW
2004), pages 224–233. ACM. (Cited on page 196.)

Pedroni, S. and Rappin, N. (2002). Jython Essentials. O’Reilly Media, Inc.
(Cited on page 45.)

Pennello, T. J. and DeRemer, F. (1978). A forward move algorithm for LR
error recovery. In Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages (POPL 1978), pages 241–254, New York,
NY, USA. ACM. (Cited on pages 166, 169, and 232.)

Peyton Jones, S. L. and Santos, A. L. M. (1998). A transformation-based
optimiser for Haskell. Science of Computer Programming, 32(1–3):3–47. (Cited
on pages 23 and 44.)

Pfeiffer, M. and Pichler, J. (2008). A comparison of tool support for textual
domain-specific languages. In Proceedings of the 8th OOPSLA Workshop on
Domain-Specific Modeling, pages 1–7. (Cited on page 103.)

Pleban, U. F. (1984). Formal semantics and compiler generation. In Mor-
genbrod, H. and Sammer, W., editors, Programmierumgebungen und Compiler,
pages 145–161. Teubner-Verlag. (Cited on page 72.)

Rekers, J. (1992). Parser Generation for Interactive Environments. PhD thesis,
University of Amsterdam. (Cited on page 13.)

Rekers, J. and Koorn, J. W. C. (1991). Substring parsing for arbitrary context-
free grammars. SIGPLAN Notices, 26(5):59–66. (Cited on page 174.)

Renggli, L., Gîrba, T., and Nierstrasz, O. (2010). Embedding languages with-
out breaking tools. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP 2010), volume 6183 of Lecture Notes in Computer Science,
pages 380–404. Springer-Verlag. (Cited on pages 106 and 107.)

Reps, T. W. and Teitelbaum, T. (1989). The synthesizer generator: a system for
constructing language-based editors. Springer-Verlag New York, Inc., New York,
NY, USA. (Cited on pages 6 and 72.)

Reynolds, A., Fiuczynski, M. E., and Grimm, R. (2008). On the feasibility
of an AOSD approach to linux kernel extensions. In Proceedings of the 2008
AOSD workshop on Aspects, components, and patterns for infrastructure software
(ACP4IS 2008), pages 8:1–8:7, New York, NY, USA. ACM. (Cited on page 67.)

van Rossum, G. (2000). Python Reference Manual. iUniverse. (Cited on
page 128.)

250

Salomon, D. J. and Cormack, G. V. (1989). Scannerless NSLR(1) parsing of
programming languages. SIGPLAN Notices, 24(7):170–178. (Cited on pages 5,
13, and 134.)

Salomon, D. J. and Cormack, G. V. (1995). The disambiguation and scan-
nerless parsing of complete character-level grammars for programming lan-
guages. Technical report, TR 95/06, Dept. of Comp. Sci., University of Man-
itoba, Winnipeg, Canada. (Cited on pages 5, 13, and 134.)

Saunders, S., Fields, D. K., and Belayev, E. (2006). IntelliJ IDEA in Action.
Manning. (Cited on page 71.)

ScalaNet (2008). Scala on .NET: quirks. http://www.scala-lang.org/
node/169. (Cited on page 68.)

Scheidgen, M. (2010). Textual modelling embedded into graphical model-
ling. In Model Driven Architecture–Foundations and Applications, pages 153–
168. Springer. (Cited on pages 74, 103, and 104.)

Schinz, M. and Odersky, M. (2001). Tail call elimination on the Java Vir-
tual Machine. In Proceedings of the Workshop on Multi-Language Infrastructure
and Interoperability (BABEL 2001), volume 59 of Electronic Notes in Theoretical
Computer Science, pages 158–171. Elsevier. (Cited on page 52.)

Selby, R. W., editor (2007). Software Engineering: Barry W. Boehm’s Lifetime Con-
tributions to Software Development, Management, and Research. Wiley-Computer
Society Press. (Cited on page 210.)

Seymour, K. and Dongarra, J. (2001). Automatic translation of Fortran to JVM
bytecode. In Proceedings of the joint ACM-ISCOPE conference on Java Grande
(JGI 2001), pages 126–133, New York, NY, USA. ACM. (Cited on pages 44

and 45.)

Shani, U. (1983). Should program editors not abandon text oriented com-
mands? SIGPLAN Notices, 18:35–41. (Cited on page 7.)

Sheard, T. and Jones, S. P. (2002). Template meta-programming for Haskell.
SIGPLAN Notices, 37:60–75. (Cited on page 106.)

Simonyi, C. (1995). The death of computer languages, the birth of Intentional
Programming. Tech. report, MS Research. (Cited on page 73.)

Singh, N., Gibbs, C., and Coady, Y. (2007). C-CLR: a tool for navigating
highly configurable system software. In Proceedings of the 6th workshop on As-
pects, components, and patterns for infrastructure software (ACP4IS 2007). ACM.
(Cited on page 67.)

Sloane, A. M., Kats, L. C. L., and Visser, E. (2009). A pure object-oriented
embedding of attribute grammars. In Ekman, T. and Vinju, J., editors, Pro-
ceedings of the Ninth Workshop on Language Descriptions, Tools, and Applications
(LDTA 2009), Electronic Notes in Theoretical Computer Science. Elsevier Sci-
ence Publishers. (Cited on page 129.)

Bibliography 251

http://www.scala-lang.org/node/169
http://www.scala-lang.org/node/169

Smaragdakis, Y. and Batory, D. (2002). Mixin layers: an object-oriented
implementation technique for refinements and collaboration-based designs.
ACM Transactions on Software Engineering and Methodology, 11(2):215–255.
(Cited on page 43.)

Spinellis, D. (2001). Notable design patterns for domain-specific languages.
Journal of Systems and Software, 56(1):91–99. (Cited on page 1.)

Spinellis, D. and Guruprasad, V. (1997). Lightweight languages as soft-
ware engineering tools. In Proceedings of the Conference on Domain-Specific
Languages, October 15-17, 1997, Santa Barbara, California, USA, pages 67–76.
USENIX. (Cited on page 1.)

Spoofax (2011). The Spoofax project. http://www.spoofax.org/. (Cited
on pages 133 and 164.)

Stahl, T., Voelter, M., and Czarnecki, K. (2006). Model-Driven Software Devel-
opment: Technology, Engineering, Management. John Wiley & Sons. (Cited on
pages 47 and 48.)

Steel, Jr., T. B. (1961). A first version of UNCOL. In IRE-AIEE-ACM ’61
(Western): Papers presented at the May 9-11, 1961, western joint IRE-AIEE-ACM
computer conference, pages 371–378, New York, NY, USA. ACM. (Cited on
page 68.)

Steele, G. (1999). Growing a language. Higher-Order and Symbolic Compututa-
tion, 12(3):221–236. (Cited on pages 12, 19, and 110.)

Stodte, M. (2001). Jacks: Java compatibility testing, the open source way. IBM
developerWorks. (Cited on page 223.)

Strembeck, M. and Zdun, U. (2009). An approach for the systematic de-
velopment of domain-specific languages. Software: Practice and Experience,
39(15):1253–1292. (Cited on page 202.)

Sun Microsystems (2004). The annotation processing tool (apt). http:
//java.sun.com/j2se/1.5.0/docs/guide/apt. (Cited on pages 20

and 45.)

Swierstra, S. D. and Duponcheel, L. (1996). Deterministic, error-correcting
combinator parsers. In Advanced Functional Programming, Second International
School–Tutorial Text, pages 184–207, London, UK. Springer-Verlag. (Cited on
page 175.)

Synytskyy, N., Cordy, J. R., and Dean, T. R. (2003). Robust multilingual
parsing using island grammars. In Proceedings of the 2003 conference of the
Centre for Advanced Studies on Collaborative research (CASCON 2003), pages
266–278. IBM Press. (Cited on page 176.)

252

http://www.spoofax.org/
http://java.sun.com/j2se/1.5.0/docs/guide/apt
http://java.sun.com/j2se/1.5.0/docs/guide/apt

Tatsubori, M., Chiba, S., Itano, K., and Killijian, M.-O. (1999). OpenJava: A
class-based macro system for Java. In Cazzola, W., Stroud, R. J., and Tisato,
F., editors, Proceedings of the First OOPSLA Workshop on Reflection and Software
Engineering (OORaSE’99), volume 1826 of Lecture Notes in Computer Science,
pages 117–133. Springer. (Cited on page 43.)

Tolmach, A. (2001). An external representation for the GHC core lan-
guage. http://haskell.org/ghc/docs/papers/core.ps.gz. (Cited
on page 44.)

Tomita, M. (1988). Efficient parsing for natural language: A fast algorithm
for practical systems. Computational Linguistics, 14(2). (Cited on pages 5, 13,
132, 135, and 150.)

Tratt, L. (2008). Domain specific language implementation via compile-time
meta-programming. ACM Transactions on Programming Languages and Sys-
tems, 30:31:1–31:40. (Cited on pages 106 and 224.)

Valkering, R. (2007). Syntax error handling in scannerless generalized LR
parsers. Master’s thesis, University of Amsterdam. (Cited on page 174.)

Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., and Sundaresan, V.
(1999). Soot - a Java bytecode optimization framework. In Proceedings of the
conference of the Centre for Advanced Studies on Collaborative research (CASCON
1999), pages 13–23. IBM Press. (Cited on pages 34 and 44.)

Van Wyk, E., Bodin, D., Gao, J., and Krishnan, L. (2010). Silver: An extensible
attribute grammar system. Science of Computer Programming, 75(1-2):39–54.
(Cited on pages 123 and 128.)

Van Wyk, E., de Moor, O., Backhouse, K., and Kwiatkowski, P. (2002). For-
warding in attribute grammars for modular language design. In Horspool,
R. N., editor, Proceedings of the 11th International Conference on Compiler Con-
struction (CC 2002), volume 2304 of Lecture Notes on Computer Science, pages
128–142, London, UK. Springer-Verlag. (Cited on pages 43 and 128.)

Van Wyk, E., Krishnan, L., Bodin, D., and Johnson, E. (2006). Adding
domain-specific and general purpose language features to Java with the
Java language extender. In Companion to the 21st ACM SIGPLAN conference
on Object-oriented programming systems, languages, and applications (OOPSLA
2006), pages 728–729. ACM. (Cited on page 113.)

Van Wyk, E., Krishnan, L., Schwerdfeger, A., and Bodin, D. (2007). Attribute
grammar-based language extensions for Java. In Ernst, E., editor, Proceedings
of the European Object Oriented Programming (ECOOP 2007), volume 4609 of
Lecture Notes on Computer Science, pages 575–599. Springer Verslag. (Cited on
pages 20, 43, and 123.)

Bibliography 253

http://haskell.org/ghc/docs/papers/core.ps.gz

Vermolen, S. D., Wachsmuth, G., and Visser, E. (2011). Generating database
migration for evolving web applications. In Denney, E. and Schultz, U. P., ed-
itors, Proceedings of the 7th International Conference on Generative Programming
and Component Engineering (GPCE 2011). ACM. (Cited on pages 16 and 101.)

Viera, M., Swierstra, S. D., and Swierstra, W. (2009). Attribute grammars fly
first-class: how to do aspect oriented programming in Haskell. SIGPLAN
Notices, 44:245–256. (Cited on page 128.)

Vinju, J. J. (2005). Type-driven automatic quotation of concrete object code in
meta programs. In Guelfi, N. and Savidis, A., editors, Proceedings of the Second
International Workshop on Rapid Integration of Software Engineering Techniques
(RISE 2005), volume 3943 of Lecture Notes in Computer Science, pages 97–112.
Springer. (Cited on pages 180, 183, 188, 196, 197, 198, and 228.)

Visser, E. (1997a). A case study in optimizing parsing schemata by dis-
ambiguation filters. In International Workshop on Parsing Technologies (IWPT
1997), pages 210–224, Boston, USA. Massachusetts Institute of Technology.
(Cited on page 135.)

Visser, E. (1997b). Scannerless generalized-LR parsing. Technical Report
P9707, Programming Research Group, University of Amsterdam. (Cited on
pages 13, 58, 132, and 135.)

Visser, E. (1997c). Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam. (Cited on pages 5, 9, 53, 75, 78, 82, 133, 135, 175,
180, 183, and 219.)

Visser, E. (2002). Meta-programming with concrete object syntax. In Batory,
D. S., Consel, C., and Taha, W., editors, Proceedings of the International Con-
ference on Generative Programming and Component Engineering (GPCE 2002),
volume 2487 of Lecture Notes in Computer Science, pages 299–315. Springer.
(Cited on pages 14, 40, 96, 105, 113, 180, 182, 183, 197, and 232.)

Visser, E. (2007). WebDSL: A case study in domain-specific language en-
gineering. In Lämmel, R., Visser, J., and Saraiva, J., editors, International
Summer School on Generative and Transformational Techniques in Software Engi-
neering (GTTSE 2007), volume 5235 of Lecture Notes in Computer Science, pages
291–373, Heidelberg. Springer. (Cited on pages 16, 80, and 212.)

Visser, E., Benaissa, Z.-E.-A., and Tolmach, A. P. (1998). Building program op-
timizers with rewriting strategies. In Felleisen, M., Hudak, P., and Queinnec,
C., editors, Functional programming, pages 13–26. ACM. (Cited on pages 54,
86, 103, 110, 114, 115, and 231.)

Voelter, M. and Solomatov, K. (2010). Language modularization and com-
position with projectional language workbenches illustrated with MPS. In
van den Brand, M., Malloy, B., and Staab, S., editors, Proceedings of the Second
International Conference on Software Language Engineering (SLE 2010), volume

254

6395 of Lecture Notes in Computer Science, pages 32–46. Springer. (Cited on
pages 7, 73, 107, 204, 220, 224, and 233.)

Wachsmuth, G. (2009). A formal way from text to code templates. In Proceed-
ings of the 12th International Conference on Fundamental Approaches to Software
Engineering (FASE 2009), pages 109–123, Berlin, Heidelberg. Springer-Verlag.
(Cited on page 196.)

Waddington, D. and Yao, B. (2007). High-fidelity C/C++ code transforma-
tion. Science of Computer Programming, 68(2):64–78. (Cited on page 135.)

Waite, W. M. and Goss, G. (1984). Compiler construction. Springer, New York.
(Cited on page 92.)

WALA (2006). The WAtson Libraries for Analysis. http://wala.
sourceforge.net/. (Cited on page 72.)

Ward, M. P. (1994). Language-oriented programming. Software — Concepts
and Tools, 15(4):147–161. (Cited on page 73.)

Warmer, J. and Kleppe, A. (2006). Building a flexible software factory using
partial domain specific models. In Gray, J., Tolvanen, J.-P., and Sprinkle, J.,
editors, Proceedings of the 6th OOPSLA Workshop on Domain-Specific Modeling
(DSM 2006), volume TR-37 of Computer Science and Information System Reports,
pages 15–22, Finland. University of Jyväskylä. (Cited on page 24.)

Warth, A., Stanojević, M., and Millstein, T. (2006). Statically scoped object
adaptation with expanders. In Proceedings of the 21st ACM SIGPLAN confer-
ence on Object-oriented programming systems, languages, and applications (OOP-
SLA 2006), volume 41 of ACM SIGPLAN Notices, pages 37–56, New York, NY,
USA. ACM. (Cited on page 69.)

Waters, R. C. (1982). Program editors should not abandon text oriented com-
mands. SIGPLAN Notices, 17:39–46. (Cited on page 7.)

Wichmann, B. A. and Ciechanowicz, Z. (1983). Pascal compiler validation. John
Wiley & Sons, Inc. New York, NY, USA. (Cited on page 202.)

Wu, H., Gray, J., and Mernik, M. (2008). Grammar-driven generation
of domain-specific language debuggers. Software: Practice and Experience,
38(10):1073–1103. (Cited on page 225.)

XDoclet (2000). XDoclet: attribute-oriented programming. http://
xdoclet.sourceforge.net/. (Cited on page 20.)

Yang, X., Chen, Y., Eide, E., and Regehr, J. (2011). Finding and understanding
bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation (PLDI 2011), pages 283–294,
New York, NY, USA. ACM. (Cited on page 225.)

Bibliography 255

http://wala.sourceforge.net/
http://wala.sourceforge.net/
http://xdoclet.sourceforge.net/
http://xdoclet.sourceforge.net/

256

Samenvatting

B O U W S T E N E N V O O R TA A L O N T W I K K E L O M G E V I N G E N

– Lennart C. L. Kats –

Programmeertalen hebben een belangrijke rol in de informatica. Ze maken
het mogelijk om complexe softwaresystemen te beschrijven en ontwikkelen
op een gestructureerde manier. Oorspronkelijk richtten programmeertalen
zich vooral op het aansturen van hardware, zoals allocatie, deallocatie en
manipulatie van geheugen en het bedienen van randapparatuur. Moderne
talen maken het mogelijk om software op een hoger niveau te beschrijven,
door te abstraheren over deze primitieve operaties. Ze bieden abstracties voor
programmeerconcepten als berekeningen, functies en objecten. Door de in-
troductie van nieuwe abstracties maken moderne programmeertalen het mo-
gelijk om software van aanzienlijk grotere schaal, complexiteit en flexibiliteit
te maken.

Domein-specifieke talen zijn programmeertalen gericht op een bepaalde toe-
passingsdomein, zoals verzekeringen of bedrijfsadministratie, of een techni-
sche domein, zoals databases of gebruikersinterfaces. Deze talen bieden ab-
stracties specifiek voor het beoogde domein en maken het mogelijk een bij-
passende notatie te gebruiken. Doordat de talen expliciet en op precieze wijze
concepten in het domein kunnen beschrijven is het ook mogelijk om een ge-
specialiseerde ontwikkelomgeving te maken. Die kan helpen bij het schrijven
van programma’s en het opsporen van fouten bij het gebruik van een domein-
specifieke taal. De combinatie van domein-specifieke abstracties, notatie en
ontwikkelomgeving maken het mogelijk om op efficiëntere wijze software te
ontwikkelen en te onderhouden.

Er komt veel kijken bij de ontwikkeling van een nieuwe domein-specifieke
taal: het ontwerpen en implementeren van een bijpassende notatie, het toewij-
zen van betekenis (semantiek) aan deze notatie zodat programma’s geschre-
ven in de taal uitgevoerd kunnen worden. Daarnaast dient een ontwikkelom-
geving voor de taal ontworpen te worden. Om de voordelen van domein-
specifieke talen optimaal te benutten is het belangrijk dat deze aspecten van
het ontwikkelen van talen efficiënt kunnen worden uitgevoerd.

Dit proefschrift richt zich op onderzoek naar tools, technieken en metho-
dieken om op efficiënte wijze nieuwe domein-specifieke talen te ontwikkelen.
Het uitgangspunt daarbij is het gebruik van en het ontwikkelen van tech-
nieken voor een taalontwikkelomgeving (language workbench), een ontwikkelom-
geving waarin diverse middelen voor het ontwerpen en implementeren van
nieuwe talen worden verenigd. Daarbij onderscheiden we drie onderzoeks-
thema’s die hieronder worden beschreven.

257

Talen voor declaratieve taalspecificatie. Net als bij de ontwikkeling van
andere softwaresystemen kan het gebruik van domein-specifieke talen hel-
pen bij het implementeren van nieuwe talen. Domein-specifieke talen kunnen
worden toegepast bij taken als het definiëren van de notatie van een nieuwe
taal, de betekenis van deze notatie en de ontwikkelomgeving. Dit proefschrift
introduceert Spoofax, een taalontwikkelomgeving waarin deze drie aspecten
samen beschreven kunnen worden in een taaldefinitie. Een taaldefinitie in
Spoofax bestaat uit een samenspel tussen de talen SDF voor notatie, Stratego
voor semantiek en de editor descriptor taal ESV voor ontwikkelomgevingen.

Belangrijke eigenschappen van taaldefinities zijn abstractie, modulariteit, uit-
breidbaarheid en portabiliteit. Een overzicht van Spoofax en een beschrijving
van de opbouw van taaldefinities en abstracties voor ontwikkelomgevingen
wordt gegeven in hoofdstuk 4. Door taaldefinities op modulaire wijze op
te bouwen, wordt het makkelijker om deze uit te breiden met nieuwe com-
ponenten. Hoofdstuk 2 beschrijft een nieuwe aanpak voor de modulariteit
en uitbreidbaarheid van talen, waarbij het mogelijk is met een minimale ken-
nis van een specifieke taaldefinitie toch uitbreidingen op de taal te schrijven.
Hoofdstuk 3 onderzoekt technieken om de portabiliteit van taaldefinities te
verzekeren, i.e. het mogelijk maken om een taal ook op een ander platform
te gebruiken. Hoofdstuk 5 richt zich op verdere abstracties voor taaldefinities
en introduceert een nieuwe domein-specifieke taal waarin taalontwerpers ge-
bruik kunnen maken van een uitbreidbare bibliotheek met abstracties voor
taalontwikkeling.

Declaratieve specificatie van syntaxis. De syntaxis (of notatie) van een taal is
een set regels die bepaalt welke zinnen en welke woorden deel uitmaken van
de taal. Die regels kunnen beschreven worden in de vorm van een grammatica.
Er zijn veel talen die gebruikt kunnen worden om grammatica’s te beschrij-
ven, maar vaak leggen die beperkingen op aan de regels en aan het herge-
bruiken van bestaande regels. De taal SDF heeft als bijzondere eigenschap
dat het de volledige klasse van context-vrije grammatica’s ondersteund, waardoor
taalontwerpers veel vrijheid hebben in het opstellen van regels en het herge-
bruiken van bestaande regels. Daarmee is het een van de onderscheidende
componenten van Spoofax (hoofdstuk 4).

Moderne ontwikkelomgevingen maken gebruik van grammatica’s om te
controleren of een programma aan de regels voldoet en om eigenschappen
van het programma te bepalen om de programmeur beter te ondersteunen.
Daarbij is het belangrijk dat de ontwikkelomgeving ook overweg kan met pro-
gramma’s met fouten of onvolledigheden erin, die vaak voorkomen tijdens het
bewerken van een programma. Als dit niet het geval is, kan de ontwikkelom-
geving programmeurs geen ondersteuning bieden in die gevallen. Het bieden
van deze ondersteuning is niet eenvoudig, aangezien grammatica’s enkel re-
gels bevatten voor programma’s die wél correct en volledig zijn volgens de
syntaxis. Hoofdstuk 6 beschrijft hoe het mogelijk is om automatisch nieuwe
regels af te leiden voor “foute” programma’s en die regels op efficiënte wijze
toe te passen.

258

Interactieve ondersteuning in een taalontwikkelomgeving. Moderne ont-
wikkelomgevingen bieden op interactieve wijze uitgebreide ondersteuning
aan programmeurs, bijvoorbeeld door fouten in programma’s te markeren
of door suggesties te doen tijdens het typen. Dit proefschrift introduceert
nieuwe technieken om op diezelfde wijze taalontwerpers te ondersteunen bij
het ontwikkelen van nieuwe talen.

Een werkwijze die bij het ontwikkelen van talen wordt toegepast is het be-
schrijven van concepten van de taal door middel van citaties van fragmenten
van de taal. Een probleem met korte citaties is vaak dat de betekenis niet
duidelijk is bij een gebrek aan context: een voorbeeld uit de natuurlijke taal is
het woord “vertrek”, waarbij het kan gaan om weggaan of een (woon)ruimte.
Hoofdstuk 7 laat zien hoe het mogelijk is om met een taalontwikkelomgeving
automatisch een diagnose te stellen van dit soort gevallen en taalontwerpers
in de gelegenheid te stellen om expliciet de betekenis aan te geven.

Het systematisch testen van software is een belangrijk principe voor de
betrouwbaarheid van softwaresystemen. Hoofdstuk 8 introduceert een al-
gemene aanpak om taaldefinities te testen. Het uitgangspunt hierbij is een
domein-specifieke taal waarin tests beschreven kunnen worden voor notatie,
semantiek en ontwikkelomgevingen van talen. Ook hier vormen citaties van
taalfragmenten de basis: elke test bestaat uit een taalfragment en een speci-
ficatie van bepaalde eigenschappen waaraan het moet voldoen. Door middel
van interactieve, taal-specifieke ondersteuning bij het schrijven van tests en de
mogelijkheid tests automatisch te draaien kan dan op efficiënte wijze worden
gecontroleerd of een taaldefinitie aan de verwachtingen voldoet.

Samenvatting 259

260

Curriculum Vitae

Lennart C. L. Kats

23 december 1982
Geboren te Amsterdam

1995–2001
VWO diploma
Goois Lyceum in Bussum
Nature & Technology and Nature & Health profiles

2001–2007
M.Sc. in Computer Science
Utrecht University
Department of Information and Computing Science
Cum laude (‘met lof’)

2007–2011
Ph.D. in Computer Science
Delft University of Technology
Department of Software Technology

2011–present
Postdoctoral Research
Delft University of Technology
Department of Software Technology

261

262

Titles in the IPA Dissertation Series Since 2005

E. Ábrahám. An Assertional Proof Sys-
tem for Multithreaded Java -Theory and
Tool Support- . Faculty of Mathematics
and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remod-
eling in Bone Tissue. Faculty of Bio-
medical Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights
Control - Expression and Enforcement.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Faculty
of Mathematics and Computing Sci-
ences, RUG. 2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System Ar-
chitecting - A Systematic Approach to
Developing Future-Proof System Archi-
tectures. Faculty of Mathematics and
Computing Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-07

I. Kurtev. Adaptability of Model Trans-
formations. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Net-

work Reliability. Faculty of Science,
UU. 2005-09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite
Populations in Dynamic Environments.
Faculty of Biomedical Engineering,
TU/e. 2005-11

J. Eggermont. Data Mining us-
ing Genetic Programming: Classifica-
tion and Symbolic Regression. Faculty
of Mathematics and Natural Sciences,
UL. 2005-12

B.J. Heeren. Top Quality Type Er-
ror Messages. Faculty of Science,
UU. 2005-13

G.F. Frehse. Compositional Verifica-
tion of Hybrid Systems using Simula-
tion Relations. Faculty of Science,
Mathematics and Computer Science,
RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Faculty of
Mathematics and Computer Science,
TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis
of Probabilistic Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with
Replication. Faculty of Mathematics
and Natural Sciences, UL. 2005-17

263

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transformation
of Source Code by Parsing and Rewrit-
ing. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-19

M.Valero Espada. Modal Abstrac-
tion and Replication of Processes with
Data. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2005-20

A. Dijkstra. Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law. Key management and link-
layer security of wireless sensor net-
works: energy-efficient attack and de-
fense. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2005-22

E. Dolstra. The Purely Functional Soft-
ware Deployment Model. Faculty of Sci-
ence, UU. 2006-01

R.J. Corin. Analysis Models for Secu-
rity Protocols. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Fac-
ulty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of
Hybrid Systems. Faculty of Math-
ematics and Computer Science and
Faculty of Mechanical Engineering,
TU/e. 2006-04

M. Kyas. Verifying OCL Specifications
of UML Models: Tool Support and Com-
positionality. Faculty of Mathematics
and Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applications.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences,
VUA. 2006-07

C.-B. Breunesse. On JML: topics in
tool-assisted verification of JML pro-
grams. Faculty of Science, Math-
ematics and Computer Science,
RU. 2006-08

B. Markvoort. Towards Hybrid Molecu-
lar Simulations. Faculty of Biomedical
Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and
Natural Sciences, UL. 2006-10

G. Russello. Separation and Adaptation
of Concerns in a Shared Data Space. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeterminis-
tic and Probabilistic Choices. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-12

B. Badban. Verification techniques
for Extensions of Equality Logic. Fac-
ulty of Sciences, Division of Math-
ematics and Computer Science,
VUA. 2006-13

A.J. Mooij. Constructive formal meth-
ods and protocol standardization. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-15

M.E. Warnier. Language Based Security
for Java and JML. Faculty of Science,

264

Mathematics and Computer Science,
RU. 2006-16

V. Sundramoorthy. At Home In Serv-
ice Discovery. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-18

L.C.M. van Gool. Formalising In-
terface Specifications. Faculty of
Mathematics and Computer Science,
TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics and
Verification of Security Protocols. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of Dis-
tributed Systems: Semantics, Implemen-
tation and Composition. Faculty of
Mathematics and Natural Sciences,
UL. 2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natu-
ral Sciences, Mathematics, and Com-
puter Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time recon-
figurable Network-on-Chip for streaming
DSP applications. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-
normalities in Locally Autonomous Dis-
tributed Systems. Faculty of Math-
ematics and Computing Sciences,
RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program Algebra. Faculty

of Natural Sciences, Mathematics,
and Computer Science, UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and Cov-
erage. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-05

I. Loeb. Natural Deduction: Sharing
by Presentation. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2007-07

N. Trčka. Silent Steps in Transition Sys-
tems and Markov Chains. Faculty of
Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics
and Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Infor-
mation in Software Development Pro-
cesses. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing Sys-
tems. Faculty of Mechanical Engineer-
ing, TU/e. 2007-12

A.J. Wijs. What to do Next?: Analysing
and Optimising System Behaviour in
Time. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2007-13

C.F.J. Lange. Assessing and Improv-
ing the Quality of Modeling: A Series of

265

Empirical Studies about the UML. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2007-14

T. van der Storm. Component-
based Configuration, Integration and
Delivery. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of
Software Architectures. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi for
Reasoning with Binding. Faculty of
Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-18

M. A. Abam. New Data Structures and
Algorithms for Mobile Data. Faculty of
Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. La Volonté Machinale:
Understanding the Electronic Voting
Controversy. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-03

A.M. Marin. An Integrated System to
Manage Crosscutting Concerns in Source

Code. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of High-
tech Multi-disciplinary Systems. Fac-
ulty of Mechanical Engineering,
TU/e. 2008-05

M. Bravenboer. Exercises in Free Syn-
tax: Syntax Definition, Parsing, and As-
similation of Language Conglomerates.
Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fair-
ness Alive: Design and Formal Verifica-
tion of Optimistic Fair Exchange Proto-
cols. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical En-
gineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Exper-
imental Study of Geometric Networks.
Faculty of Mathematics and Com-
puter Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Speci-
fications Using Context-Sensitive Wild-
cards. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-13

266

F.D. Garcia. Formal and Computa-
tional Cryptography: Protocols, Hashes
and Commitments. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-14

P. E. A. Dürr. Resource-based Veri-
fication for Robust Composition of As-
pects. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-15

E.M. Bortnik. Formal Methods in Sup-
port of SMC Design. Faculty of Me-
chanical Engineering, TU/e. 2008-16

R.H. Mak. Design and Perfor-
mance Analysis of Data-Independent
Stream Processing Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Objects:
Decompositions and Applications. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Sys-
tems with Data - Enumerative Meth-
ods and Constraint Solving. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf. Mining Semi-structured
Data, Theoretical and Experimental As-
pects of Pattern Evaluation. Faculty
of Mathematics and Natural Sciences,
UL. 2008-22

R. Brijder. Models of Natural Compu-
tation: Gene Assembly and Membrane

Systems. Faculty of Mathematics and
Natural Sciences, UL. 2008-23

A. Koprowski. Termination of Rewrit-
ing and Its Certification. Faculty of
Mathematics and Computer Science,
TU/e. 2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Devel-
opment. Faculty of Mathematics and
Computer Science, TU/e. 2008-25

J. Markovski. Real and Stochas-
tic Time in Process Algebras for Per-
formance Evaluation. Faculty of
Mathematics and Computer Science,
TU/e. 2008-26

H. Kastenberg. Graph-Based Software
Specification and Verification. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys
from Noisy Data Theory and Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor
Networks in Motion: Clustering Algo-
rithms for Service Discovery and Pro-
visioning. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-29

M.H.G. Verhoef. Modeling and Vali-
dating Distributed Embedded Real-Time
Control Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof as-
sistant for Clean. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engi-

267

neering, Mathematics, and Computer
Science, TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Di-
vision of Mathematics and Computer
Science, VUA. 2009-07

A. Mesbah. Analysis and Testing
of Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready
for Prime Time. Faculty of Science,
UU. 2009-9

K.R. Olmos Joffré. Strategies for Con-
text Sensitive Program Transformation.
Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning
about Java programs in PVS using JML.
Faculty of Science, Mathematics and
Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program

Comprehension. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2009-14

H.L. Jonker. Security Matters: Privacy
in Voting and Fairness in Digital Ex-
change. Faculty of Mathematics and
Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2009-17

C. Kaliszyk. Correctness and Availabil-
ity: Building Computer Algebra on top of
Proof Assistants and making Proof Assis-
tants available over the Web. Faculty of
Science, Mathematics and Computer
Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2009-19

B. Ploeger. Improved Verification Meth-
ods for Concurrent Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Anal-
ysis of Probabilistic Models. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strate-
gies for Parameter Optimization and
Their Applications to Medical Image

268

Analysis. Faculty of Mathematics and
Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks.
Faculty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-
Oriented Law Enforcement. Faculty of
Mathematics and Natural Sciences,
UL. 2009-24

A.I. Baars. Embedded Compilers. Fac-
ulty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Con-
trol for Dynamic Collaborative Environ-
ments. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2009-26

J.F.J. Laros. Metrics and Visualisation
for Crime Analysis and Genomics. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2009-27

C.J. Boogerd. Focusing Automatic Code
Inspections. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2010-01

M.R. Neuhäußer. Model Checking
Nondeterministic and Randomly Timed
Systems. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2010-02

J. Endrullis. Termination and Produc-
tivity. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented Lan-
guages. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2010-04

Y. Wang. Epistemic Modelling and Pro-
tocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices
and Probability in Model Checking
Timed Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2010-06

A. Nugroho. The Effects of UML Mod-
eling on the Quality of Software. Faculty
of Mathematics and Natural Sciences,
UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty of
Science, Mathematics and Computer
Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Dis-
covery of Knowledge - Foundations, Im-
plementations and Applications. Faculty
of Mathematics and Natural Sciences,
UL. 2010-09

D. Costa. Formal Models for Component
Connectors. Faculty of Sciences, Di-
vision of Mathematics and Computer
Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Serv-
ice: Schedulability Analysis of Real-Time
and Distributed Services. Faculty of
Mathematics and Natural Sciences,
UL. 2010-11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty
of Sciences, Department of Computer
Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of the
Template Enigma: Software Code Gen-
eration with Templates. Faculty of
Mathematics and Computer Science,
TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2011-03

L. Astefanoaei. An Executable The-
ory of Multi-Agent Systems Refinement.

269

Faculty of Mathematics and Natural
Sciences, UL. 2011-04

J. Proença. Synchronous coordination
of distributed components. Faculty of
Mathematics and Natural Sciences,
UL. 2011-05

A. Moralı. IT Architecture-Based Con-
fidentiality Risk Assessment in Networks
of Organizations. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2011-06

M. van der Bijl. On changing mod-
els in Model-Based Testing. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics
and Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis of
Information Leakage in Probabilistic and
Nondeterministic Systems. Faculty of
Science, Mathematics and Computer
Science, RU. 2011-09

M. Atif. Formal Modeling and Verifi-
cation of Distributed Failure Detectors.
Faculty of Mathematics and Com-
puter Science, TU/e. 2011-10

P.J.A. van Tilburg. From Computabil-
ity to Executability – A process-theoretic
view on automata theory. Faculty of
Mathematics and Computer Science,
TU/e. 2011-11

Z. Protic. Configuration management
for models: Generic methods for model
comparison and model co-evolution. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty of
Mathematics and Computer Science,
TU/e. 2011-13

S. Malakuti. Event Composition Model:
Achieving Naturalness in Runtime En-
forcement. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2011-14

M. Raffelsieper. Cell Libraries and Ver-
ification. Faculty of Mathematics and
Computer Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and
Visibility on Triangulated Terrains. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Qual-
ity of Service of Component Connectors.
Faculty of Mathematics and Natural
Sciences, UL. 2011-17

R. Middelkoop. Capturing and Ex-
ploiting Abstract Views of States in
OO Verification. Faculty of Math-
ematics and Computer Science,
TU/e. 2011-18

M.F. van Amstel. Assessing and Im-
proving the Quality of Model Transfor-
mations. Faculty of Mathematics and
Computer Science, TU/e. 2011-19

A.N. Tamalet. Towards Correct Pro-
grams in Practice. Faculty of Science,
Mathematics and Computer Science,
RU. 2011-20

H.J.S. Basten. Ambiguity Detection
for Programming Language Grammars.
Faculty of Science, UvA. 2011-21

M. Izadi. Model Checking of Compo-
nent Connectors. Faculty of Mathemat-
ics and Natural Sciences, UL. 2011-22

L.C.L. Kats. Building Blocks for Lan-
guage Workbenches. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2011-23

270

	Building Blocks for Language Workbenches
	Acknowledgments
	Contents
	Introduction
	Domain-Specific Languages
	Domain-Specific Language Engineering
	Internal Domain-Specific Languages
	External Domain-Specific Languages
	Domain-Specific Language Engineering Tools

	IDE Engineering
	Integrated DSL and IDE Engineering Tools
	Challenges and Research Questions
	Domain-Specific Languages For Declarative Specification of Languages and IDEs
	Declarative Syntax Definition in Interactive Environments
	Interactive Meta-Tooling Support for Language Engineering

	Approach
	Origin of Chapters

	Mixing Source and Bytecode: A Case for Compilation by Normalization
	Introduction
	Extensions Based on the Dryad Compiler
	Extension with Partial and Open Classes
	Extension with Traits
	Extension with Iterator Generators
	Assimilating Expression-Level Extensions

	Realization of the Base Compiler
	Language Design
	Name Management and Hygiene
	Typechecking and Verification
	Source Tracing
	Data-Flow Analysis on the Core Language

	Normalization Rules for Code Generation
	Mixed Language Normalization
	Pseudo-Instruction Normalization

	Discussion
	Related and Future Work
	Conclusion

	Using Aspects for Language Portability
	Introduction
	Targeting Multiple Software Platforms
	Language Portability Concerns
	Aspects to Address Language Portability Concerns

	Modularity and Aspects in Stratego
	Modularity and Extensible Definitions
	Introducing Aspect-Oriented Programming to Stratego
	Implementation of Aspects in Stratego

	Encapsulating Platform Logic with Aspects
	Platform-Specific Libraries
	Platform Escapes and Native Calls
	Interoperability and integration with Java applications
	Performance and Stack Behavior

	Discussion
	Related work
	Conclusion

	The Spoofax Language Workbench
	Introduction
	An Overview of Spoofax
	Editor Services
	Component Architecture
	Structure of a Language Definition
	Agile Language Development
	Example Domain-Specific Language

	Syntax
	Syntactic Editor Services

	Analysis and Transformation
	Stratego
	Desugaring
	Reporting Errors and Warnings
	Binding Transformations to Editor Services
	Name and Type Analysis
	Reference Resolving and Occurrence Highlighting
	Content Completion
	Transformations, Code Generation, and Views

	Implementation
	Language-parametric Editor Services
	Semantic Services and Rewrite Rules
	Editor Extensibility and Customization

	Experience
	Discussion and Related Work
	Open Issues and Future Work
	Conclusion

	Decorated Attribute Grammars
	Introduction
	Attribute Grammars
	Pattern-Based Attribute Grammars
	Copy Rules

	Decorators
	Basic Attribute Propagation Operations
	Attribute Propagation using Decorators

	Applications
	Constraints and Error Reporting
	Name and Type Analysis
	Control-flow Analysis
	Data-flow analysis

	Case Study: Grammar Analyses and Transformations
	Implementation
	Performance

	Related Work
	Conclusions and Future Work

	Error Recovery for Generated Modular Language Environments
	Introduction
	Composite Languages and Generalized Parsing
	Island Grammars
	Permissive Grammars
	Chunk-Based Water Recovery Rules
	General Water Recovery Rules
	Literal-Insertion Recovery Rules
	Combining Different Recovery Rules
	Automatic Derivation of Permissive Grammars
	Customization of Permissive Grammars

	Parsing Permissive Grammars
	Backtracking
	Selecting Choice Points for Backtracking
	Applying Recovery Rules
	Algorithm

	Layout-Sensitive Recovery of Scoping Structures
	Layout-Sensitive Regional Recovery
	Nested Structures as Regions
	Layout-Sensitive Region Selection
	Selection Schemata
	Practical Considerations
	Integrating Recovery Techniques

	Applying Error Recovery in an IDE
	Efficient Construction of Languages and Editor Services
	Guarantees on Recovery Correctness
	Syntactic Error Reporting
	Syntax Highlighting
	Content Completion

	Evaluation
	Setup
	Experiments
	Summary

	Related Work
	Recovery for Composable Languages
	IDE support for Composite Languages
	Island Grammars

	Conclusion

	Interactive Disambiguation of Meta Programs with Concrete Object Syntax
	Introduction
	Meta-programming with Concrete Object Syntax
	Concrete Syntax Embedding Techniques
	Mixin Grammars
	Assimilation of Concrete Object Syntax in Meta Languages
	Automatic Generation of Mixin Grammars

	Interactive Disambiguation
	Classes of Ambiguities
	Ambiguity in Quotations
	Ambiguity in Anti-Quotations
	Automatically Providing Disambiguation Suggestions
	Presentation of Suggestions

	Evaluation
	Discussion and Related Work
	Conclusion

	Integrated Language Definition Testing
	Introduction
	Background: Language Definitions
	Test Specification Language Design
	Test Specification Interaction Design
	Editor Services for Test Specification
	Running Language Definition Tests
	Using Integrated Language Definition Testing

	Language Definition Testing by Example
	Syntax
	Static Semantic Checks
	Navigation
	Transformations and Refactorings
	Code Generation and Execution
	Testing for End-Programmers
	Freeform Tests
	Self Application

	Implementation
	Infrastructure
	Syntax and Parsing
	Tool Support

	Discussion and Related Work
	Concluding Remarks

	Conclusion
	Summary of Contributions
	Evaluation
	Research Questions Revisited
	Recommendations for Future Work

	Bibliography
	Samenvatting
	Curriculum Vitae
	Titles in the IPA Dissertation Series

